Goto

Collaborating Authors

Loans


Japan's top banks expect solid profits, with MUFG seeing record year

The Japan Times

Japan's top three banks said on Monday that they expect solid lending income at home and aboard to boost net profits this business year, with biggest lender Mitsubishi UFJ Financial Group (MUFG) forecasting a record annual profit. MUFG forecast a 16% increase in net profit to ¥1.3 trillion ($9.63 billion) for the year ending in March 2024, exceeding a previous record set two years ago and beating the ¥1.18 trillion average of 14 analysts' estimates compiled by Refinitiv. Sumitomo Mitsui Financial Group (SMFG) and Mizuho Financial Group, Japan's second- and third-largest lenders by assets, also expect their highest net profits since the mid 2010s. This could be due to a conflict with your ad-blocking or security software. Please add japantimes.co.jp and piano.io to your list of allowed sites.


Overview of Advanced Methods of Reinforcement Learning in Finance

#artificialintelligence

In the last course of our specialization, Overview of Advanced Methods of Reinforcement Learning in Finance, we will take a deeper look into topics discussed in our third course, Reinforcement Learning in Finance. In particular, we will talk about links between Reinforcement Learning, option pricing and physics, implications of Inverse Reinforcement Learning for modeling market impact and price dynamics, and perception-action cycles in Reinforcement Learning. After taking this course, students will be able to - explain fundamental concepts of finance such as market equilibrium, no arbitrage, predictability, - discuss market modeling, - Apply the methods of Reinforcement Learning to high-frequency trading, credit risk peer-to-peer lending, and cryptocurrencies trading.


Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections

Neural Information Processing Systems

We present a new algorithm to generate minimal, stable, and symbolic corrections to an input that will cause a neural network with ReLU activations to change its output. We argue that such a correction is a useful way to provide feedback to a user when the network's output is different from a desired output. Our algorithm generates such a correction by solving a series of linear constraint satisfaction problems. The technique is evaluated on three neural network models: one predicting whether an applicant will pay a mortgage, one predicting whether a first-order theorem can be proved efficiently by a solver using certain heuristics, and the final one judging whether a drawing is an accurate rendition of a canonical drawing of a cat.


Yang Liu

Neural Information Processing Systems

Although many fairness criteria have been proposed for decision making, their long-term impact on the well-being of a population remains unclear. In this work, we study the dynamics of population qualification and algorithmic decisions under a partially observed Markov decision problem setting. By characterizing the equilibrium of such dynamics, we analyze the long-term impact of static fairness constraints on the equality and improvement of group well-being. Our results show that static fairness constraints can either promote equality or exacerbate disparity depending on the driving factor of qualification transitions and the effect of sensitive attributes on feature distributions. We also consider possible interventions that can effectively improve group qualification or promote equality of group qualification. Our theoretical results and experiments on static real-world datasets with simulated dynamics show that our framework can be used to facilitate social science studies.


Bandit Learning with Delayed Impact of Actions

Neural Information Processing Systems

We consider a stochastic multi-armed bandit (MAB) problem with delayed impact of actions. In our setting, actions taken in the past impact the arm rewards in the subsequent future. This delayed impact of actions is prevalent in the real world. For example, the capability to pay back a loan for people in a certain social group might depend on historically how frequently that group has been approved loan applications. If banks keep rejecting loan applications to people in a disadvantaged group, it could create a feedback loop and further damage the chance of getting loans for people in that group. In this paper, we formulate this delayed and longterm impact of actions within the context of multi-armed bandits. We generalize the bandit setting to encode the dependency of this "bias" due to the action history during learning. The goal is to maximize the collected utilities over time while taking into account the dynamics created by the delayed impacts of historical actions.


Neural Pseudo-Label Optimism for the Bank Loan Problem

Neural Information Processing Systems

We study a class of classification problems best exemplified by the bank loan problem, where a lender decides whether or not to issue a loan. The lender only observes whether a customer will repay a loan if the loan is issued to begin with, and thus modeled decisions affect what data is available to the lender for future decisions. As a result, it is possible for the lender's algorithm to "get stuck" with a self-fulfilling model. This model never corrects its false negatives, since it never sees the true label for rejected data, thus accumulating infinite regret. In the case of linear models, this issue can be addressed by adding optimism directly into the model predictions. However, there are few methods that extend to the function approximation case using Deep Neural Networks.


On the Safety of Interpretable Machine Learning: A Maximum Deviation Approach

Neural Information Processing Systems

Interpretable and explainable machine learning has seen a recent surge of interest. We focus on safety as a key motivation behind the surge and make the relationship between interpretability and safety more quantitative. Toward assessing safety, we introduce the concept of maximum deviation via an optimization problem to find the largest deviation of a supervised learning model from a reference model regarded as safe. We then show how interpretability facilitates this safety assessment. For models including decision trees, generalized linear and additive models, the maximum deviation can be computed exactly and efficiently. For tree ensembles, which are not regarded as interpretable, discrete optimization techniques can still provide informative bounds. For a broader class of piecewise Lipschitz functions, we leverage the multi-armed bandit literature to show that interpretability produces tighter (regret) bounds on the maximum deviation. We present case studies, including one on mortgage approval, to illustrate our methods and the insights about models that may be obtained from deviation maximization.


On the Safety of Interpretable Machine Learning: A Maximum Deviation Approach

Neural Information Processing Systems

Interpretable and explainable machine learning has seen a recent surge of interest. We focus on safety as a key motivation behind the surge and make the relationship between interpretability and safety more quantitative. Toward assessing safety, we introduce the concept of maximum deviation via an optimization problem to find the largest deviation of a supervised learning model from a reference model regarded as safe. We then show how interpretability facilitates this safety assessment. For models including decision trees, generalized linear and additive models, the maximum deviation can be computed exactly and efficiently. For tree ensembles, which are not regarded as interpretable, discrete optimization techniques can still provide informative bounds. For a broader class of piecewise Lipschitz functions, we leverage the multi-armed bandit literature to show that interpretability produces tighter (regret) bounds on the maximum deviation. We present case studies, including one on mortgage approval, to illustrate our methods and the insights about models that may be obtained from deviation maximization.


Neural Pseudo-Label Optimism for the Bank Loan Problem

Neural Information Processing Systems

We study a class of classification problems best exemplified by the \emph{bank loan} problem, where a lender decides whether or not to issue a loan. The lender only observes whether a customer will repay a loan if the loan is issued to begin with, and thus modeled decisions affect what data is available to the lender for future decisions. As a result, it is possible for the lender's algorithm to get stuck'' with a self-fulfilling model. This model never corrects its false negatives, since it never sees the true label for rejected data, thus accumulating infinite regret. In the case of linear models, this issue can be addressed by adding optimism directly into the model predictions.


Automation In Banking Using AI - DPN

#artificialintelligence

In today's market, automation in banking has become a crucial factor for banks to remain competitive. Banks are leveraging automation to offer personalised services to customers, reduce operational costs, and improve the speed and accuracy of their processes. Automation technologies like Robotic Process Automation (RPA), Artificial Intelligence (AI), and Machine Learning (ML) are being used to automate repetitive and time-consuming tasks such as data entry, account opening, loan processing, and customer service. One of the significant benefits of automation in banking is improved customer experience. Banks are using chatbots and virtual assistants to provide 24/7 customer service, allowing customers to get instant assistance without having to wait for a human representative.