Goto

Collaborating Authors

 Economy


Will AI wipe out the first rung of the career ladder?

The Guardian

This week, I'm wondering what my first jobs in journalism would have been like had generative AI been around. In other news: Elon Musk leaves a trail of chaos, and influencers are selling the text they fed to AI to make art. Generative artificial intelligence may eliminate the job you got with your diploma still in hand, say executives who offered grim assessments of the entry-level job market last week in multiple forums. Dario Amodei, CEO of Anthropic, which makes the multifunctional AI model Claude, told Axios last week that he believes that AI could cut half of all entry-level white-collar jobs and send overall unemployment rocketing to 20% within the next five years. One explanation why an AI company CEO might make such a dire prediction is to hype the capabilities of his product.


Probing Social Bias in Labor Market Text Generation by ChatGPT: A Masked Language Model Approach

Neural Information Processing Systems

As generative large language models (LLMs) such as ChatGPT gain widespread adoption in various domains, their potential to propagate and amplify social biases, particularly in high-stakes areas such as the labor market, has become a pressing concern. AI algorithms are not only widely used in the selection of job applicants, individual job seekers may also make use of generative LLMs to help develop their job application materials. Against this backdrop, this research builds on a novel experimental design to examine social biases within ChatGPT-generated job applications in response to real job advertisements. By simulating the process of job application creation, we examine the language patterns and biases that emerge when the model is prompted with diverse job postings. Notably, we present a novel bias evaluation framework based on Masked Language Models to quantitatively assess social bias based on validated inventories of social cues/words, enabling a systematic analysis of the language used. Our findings show that the increasing adoption of generative AI, not only by employers but also increasingly by individual job seekers, can reinforce and exacerbate gender and social inequalities in the labor market through the use of biased and gendered language.



Foundation Inference Models for Markov Jump Processes David Berghaus 1, 2

Neural Information Processing Systems

Markov jump processes are continuous-time stochastic processes which describe dynamical systems evolving in discrete state spaces. These processes find wide application in the natural sciences and machine learning, but their inference is known to be far from trivial. In this work we introduce a methodology for zeroshot inference of Markov jump processes (MJPs), on bounded state spaces, from noisy and sparse observations, which consists of two components. First, a broad probability distribution over families of MJPs, as well as over possible observation times and noise mechanisms, with which we simulate a synthetic dataset of hidden MJPs and their noisy observations. Second, a neural recognition model that processes subsets of the simulated observations, and that is trained to output the initial condition and rate matrix of the target MJP in a supervised way. We empirically demonstrate that one and the same (pretrained) recognition model can infer, in a zero-shot fashion, hidden MJPs evolving in state spaces of different dimensionalities. Specifically, we infer MJPs which describe (i) discrete flashing ratchet systems, which are a type of Brownian motors, and the conformational dynamics in (ii) molecular simulations, (iii) experimental ion channel data and (iv) simple protein folding models. What is more, we show that our model performs on par with state-of-the-art models which are trained on the target datasets.


Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits

Neural Information Processing Systems

We propose a novel piecewise stationary linear bandit (PSLB) model, where the environment randomly samples a context from an unknown probability distribution at each changepoint, and the quality of an arm is measured by its return averaged over all contexts. The contexts and their distribution, as well as the changepoints are unknown to the agent.


A Non-parametric Direct Learning Approach to Heterogeneous Treatment Effect Estimation under Unmeasured Confounding

Neural Information Processing Systems

In many social, behavioral, and biomedical sciences, treatment effect estimation is a crucial step in understanding the impact of an intervention, policy, or treatment. In recent years, an increasing emphasis has been placed on heterogeneity in treatment effects, leading to the development of various methods for estimating Conditional Average Treatment Effects (CATE). These approaches hinge on a crucial identifying condition of no unmeasured confounding, an assumption that is not always guaranteed in observational studies or randomized control trials with non-compliance. In this paper, we proposed a general framework for estimating CATE with a possible unmeasured confounder using Instrumental Variables. We also construct estimators that exhibit greater efficiency and robustness against various scenarios of model misspecification. The efficacy of the proposed framework is demonstrated through simulation studies and a real data example.


Tackling Uncertain Correspondences for Multi-Modal Entity Alignment

Neural Information Processing Systems

Recently, multi-modal entity alignment has emerged as a pivotal endeavor for the integration of Multi-Modal Knowledge Graphs (MMKGs) originating from diverse data sources. Existing works primarily focus on fully depicting entity features by designing various modality encoders or fusion approaches. However, uncertain correspondences between inter-modal or intra-modal cues, such as weak inter-modal associations, description diversity, and modality absence, still severely hinder the effective exploration of aligned entity similarities. To this end, in this paper, we propose a novel Tackling uncertain correspondences method for Multi-modal Entity Alignment (TMEA). Specifically, to handle diverse attribute knowledge descriptions, we design alignment-augmented abstract representation that incorporates the large language model and in-context learning into attribute alignment and filtering for generating and embedding the attribute abstract. In order to mitigate the influence of the modality absence, we propose to unify all modality features into a shared latent subspace and generate pseudo features via variational autoencoders according to existing modal features. Then, we develop an inter-modal commonality enhancement mechanism based on cross-attention with orthogonal constraints, to address weak semantic associations between modalities.


Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models

Neural Information Processing Systems

Beyond estimating parameters of interest from data, one of the key goals of statistical inference is to properly quantify uncertainty in these estimates. In Bayesian inference, this uncertainty is provided by the posterior distribution, the computation of which typically involves an intractable high-dimensional integral. Among available approximation methods, sampling-based approaches come with strong theoretical guarantees but scale poorly to large problems, while variational approaches scale well but offer few theoretical guarantees. In particular, variational methods are known to produce overconfident estimates of posterior uncertainty and are typically non-identifiable, with many latent variable configurations generating equivalent predictions. Here, we address these challenges by showing how diffusion-based models (DBMs), which have recently produced state-of-the-art performance in generative modeling tasks, can be repurposed for performing calibrated, identifiable Bayesian inference. By exploiting a previously established connection between the stochastic and probability flow ordinary differential equations (pfODEs) underlying DBMs, we derive a class of models, inflationary flows, that uniquely and deterministically map high-dimensional data to a lower-dimensional Gaussian distribution via ODE integration. This map is both invertible and neighborhood-preserving, with controllable numerical error, with the result that uncertainties in the data are correctly propagated to the latent space. We demonstrate how such maps can be learned via standard DBM training using a novel noise schedule and are effective at both preserving and reducing intrinsic data dimensionality. The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space, that afford principled Bayesian inference.


Long-form factuality in large language models

Neural Information Processing Systems

Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for longform factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality.


Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis

Neural Information Processing Systems

Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first-cut multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA.