Goto

Collaborating Authors

 Automobiles & Trucks


BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction

Neural Information Processing Systems

Simulating realistic behaviors of traffic agents is pivotal for efficiently validating the safety of autonomous driving systems. Existing data-driven simulators primarily use an encoder-decoder architecture to encode the historical trajectories before decoding the future. However, the heterogeneity between encoders and decoders complicates the models, and the manual separation of historical and future trajectories leads to low data utilization. Given these limitations, we propose BehaviorGPT, a homogeneous and fully autoregressive Transformer designed to simulate the sequential behavior of multiple agents.


STEER: Simple Temporal Regularization For Neural ODEs Arnab Ghosh Harkirat Singh Behl Emilien Dupont University of Oxford

Neural Information Processing Systems

Training Neural Ordinary Differential Equations (ODEs) is often computationally expensive. Indeed, computing the forward pass of such models involves solving an ODE which can become arbitrarily complex during training. Recent works have shown that regularizing the dynamics of the ODE can partially alleviate this. In this paper we propose a new regularization technique: randomly sampling the end time of the ODE during training. The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks. Further, the technique is orthogonal to several other methods proposed to regularize the dynamics of ODEs and as such can be used in conjunction with them. We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.


Provably Safe Reinforcement Learning with Step-wise Violation Constraints Institute for Interdisciplinary Information Sciences, Tsinghua University

Neural Information Processing Systems

We investigate a novel safe reinforcement learning problem with step-wise violation constraints. Our problem differs from existing works in that we focus on stricter step-wise violation constraints and do not assume the existence of safe actions, making our formulation more suitable for safety-critical applications that need to ensure safety in all decision steps but may not always possess safe actions, e.g., robot control and autonomous driving.


Provably Safe Reinforcement Learning with Step-wise Violation Constraints Institute for Interdisciplinary Information Sciences, Tsinghua University

Neural Information Processing Systems

We investigate a novel safe reinforcement learning problem with step-wise violation constraints. Our problem differs from existing works in that we focus on stricter step-wise violation constraints and do not assume the existence of safe actions, making our formulation more suitable for safety-critical applications that need to ensure safety in all decision steps but may not always possess safe actions, e.g., robot control and autonomous driving.


VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks

Neural Information Processing Systems

Unlike traditional MLLMs limited to text output, VisionLLM v2 significantly broadens its application scope. It excels not only in conventional visual question answering (VQA) but also in open-ended, cross-domain vision tasks such as object localization, pose estimation, and image generation and editing. To this end, we propose a new information transmission mechanism termed "super link", as a medium to connect MLLM with task-specific decoders. It not only allows flexible transmission of task information and gradient feedback between the MLLM and multiple downstream decoders but also effectively resolves training conflicts in multi-tasking scenarios. In addition, to support the diverse range of tasks, we carefully collected and combed training data from hundreds of public vision and vision-language tasks. In this way, our model can be joint-trained end-to-end on hundreds of vision language tasks and generalize to these tasks using a set of shared parameters through different user prompts, achieving performance comparable to task-specific models. We believe VisionLLM v2 will offer a new perspective on the generalization of MLLMs.


Beware of Road Markings: A New Adversarial Patch Attack to Monocular Depth Estimation, Hao Wang

Neural Information Processing Systems

Monocular Depth Estimation (MDE) enables the prediction of scene depths from a single RGB image, having been widely integrated into production-grade autonomous driving systems, e.g., Tesla Autopilot. Current adversarial attacks to MDE models focus on attaching an optimized adversarial patch to a designated obstacle. Although effective, this approach presents two inherent limitations: its reliance on specific obstacles and its limited malicious impact. In contrast, we propose a pioneering attack to MDE models that decouples obstacles from patches physically and deploys optimized patches on roads, thereby extending the attack scope to arbitrary traffic participants. This approach is inspired by our groundbreaking discovery: various MDE models with different architectures, trained for autonomous driving, heavily rely on road regions when predicting depths for different obstacles. Based on this discovery, we design the Adversarial Road Marking (AdvRM) attack, which camouflages patches as ordinary road markings and deploys them on roads, thereby posing a continuous threat within the environment. Experimental results from both dataset simulations and real-world scenarios demonstrate that AdvRM is effective, stealthy, and robust against various MDE models, achieving about 1.507 of Mean Relative Shift Ratio (MRSR) over 8 MDE models. The code is available at this Github Repo.


Tesla has begun testing driverless robotaxis in Austin ahead of June 12 launch, report says

Mashable

We now have a tentative launch date for Tesla's long-awaited robotaxi service in Austin, Texas: June 12. How long has Tesla been testing out these driverless vehicles that will soon be on the public streets of a major U.S. city? According to Tesla CEO Elon Musk, testing has been going on for "several days." "For the past several days, Tesla has been testing self-driving Model Y cars (no one in driver's seat) on Austin public streets with no incidents," Musk posted on his X account on Thursday. "A month ahead of schedule," Musk continued.


Interpretable Image Classification with Adaptive Prototype-based Vision Transformers

Neural Information Processing Systems

This method classifies an image by comparing it to a set of learned prototypes, providing explanations of the form "this looks like that." In our model, a prototype consists of parts, which can deform over irregular geometries to create a better comparison between images. Unlike existing models that rely on Convolutional Neural Network (CNN) backbones and spatially rigid prototypes, our model integrates Vision Transformer (ViT) backbones into prototype based models, while offering spatially deformed prototypes that not only accommodate geometric variations of objects but also provide coherent and clear prototypical feature representations with an adaptive number of prototypical parts. Our experiments show that our model can generally achieve higher performance than the existing prototype based models. Our comprehensive analyses ensure that the prototypes are consistent and the interpretations are faithful. Our code is available at https://github.com/Henrymachiyu/ProtoViT.


WindsorML: High-Fidelity Computational Fluid Dynamics Dataset For Automotive Aerodynamics

Neural Information Processing Systems

This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computational Fluid Dynamics (CFD) simulation was run with a GPU-native high-fidelity Wall-Modeled Large-Eddy Simulations (WMLES) using a Cartesian immersed-boundary method using more than 280M cells to ensure the greatest possible accuracy. The dataset contains geometry variants that exhibits a wide range of flow characteristics that are representative of those observed on road-cars. The dataset itself contains the 3D time-averaged volume & boundary data as well as the geometry and force & moment coefficients.


3dbb8b6b5576b85afb3037e9630812dc-Paper-Conference.pdf

Neural Information Processing Systems

The reliability of driving perception systems under unprecedented conditions is crucial for practical usage. Latest advancements have prompted increasing interest in multi-LiDAR perception. However, prevailing driving datasets predominantly utilize single-LiDAR systems and collect data devoid of adverse conditions, failing to capture the complexities of real-world environments accurately. Addressing these gaps, we proposed Place3D, a full-cycle pipeline that encompasses Li-DAR placement optimization, data generation, and downstream evaluations. Our framework makes three appealing contributions. 1) To identify the most effective configurations for multi-LiDAR systems, we introduce the Surrogate Metric of the Semantic Occupancy Grids (M-SOG) to evaluate LiDAR placement quality.