Goto

Collaborating Authors

Research Report


Why diversity is key to a successful AI strategy

#artificialintelligence

It's clear that, with AI becoming embedded in all aspects of our life, companies need to do more to ensure their systems are free of bias and even find ways to use the technology to help mitigate harmful biases in order to make fairer business decisions. So how do we do that? It starts by building a diverse team, something the industry is still failing to do; according to research published by the AI Now Institute, 80% of AI professors are men, and only 15% of AI researchers at Facebook and 10% of AI researchers at Google are women. Jen Rodvold, head of digital ethics and tech for good at Sopra Steria, comments: "Diversity is key not only to driving a successful AI strategy, but essential to a business' bottom line. A diverse workforce will offer a range of different perspectives, flag any bias involved in the development process and help to interrogate wider organisational processes that could be perpetuating bias and impacting the way your technology is developed in unforeseen ways."


AI-Powered Text From This Program Could Fool the Government

WIRED

In October 2019, Idaho proposed changing its Medicaid program. The state needed approval from the federal government, which solicited public feedback via Medicaid.gov. But half came not from concerned citizens or even internet trolls. They were generated by artificial intelligence. And a study found that people could not distinguish the real comments from the fake ones.


Containment algorithms won't stop super-intelligent AI, scientists warn

#artificialintelligence

A team of computer scientists has used theoretical calculations to argue that algorithms could not control a super-intelligent AI. Their study addresses what Oxford philosopher Nick Bostrom calls the control problem: how do we ensure super-intelligence machines act in our interests? The researchers conceived of a theoretical containment algorithm that would resolve this problem by simulating the AI's behavior, and halting the program if its actions became harmful. If you break the problem down to basic rules from theoretical computer science, it turns out that an algorithm that would command an AI not to destroy the world could inadvertently halt its own operations. If this happened, you would not know whether the containment algorithm is still analyzing the threat, or whether it has stopped to contain the harmful AI.


Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2

Science

A minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun et al. reconstructed transmission in Hunan, China, up to April 2020. Such detailed data can be used to separate out the relative contribution of transmission control measures aimed at isolating individuals relative to population-level distancing measures. The authors found that most of the secondary transmissions could be traced back to a minority of infected individuals, and well over half of transmission occurred in the presymptomatic phase. Furthermore, the duration of exposure to an infected person combined with closeness and number of household contacts constituted the greatest risks for transmission, particularly when lockdown conditions prevailed. These findings could help in the design of infection control policies that have the potential to minimize both virus transmission and economic strain. Science , this issue p. [eabe2424][1] ### INTRODUCTION The role of transmission heterogeneities in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics remains unclear, particularly those heterogeneities driven by demography, behavior, and interventions. To understand individual heterogeneities and their effect on disease control, we analyze detailed contact-tracing data from Hunan, a province in China adjacent to Hubei and one of the first regions to experience a SARS-CoV-2 outbreak in January to March 2020. The Hunan outbreak was swiftly brought under control by March 2020 through a combination of nonpharmaceutical interventions including population-level mobility restriction (i.e., lockdown), traveler screening, case isolation, contact tracing, and quarantine. In parallel, highly detailed epidemiological information on SARS-CoV-2–infected individuals and their close contacts was collected by the Hunan Provincial Center for Disease Control and Prevention. ### RATIONALE Contact-tracing data provide information to reconstruct transmission chains and understand outbreak dynamics. These data can in turn generate valuable intelligence on key epidemiological parameters and risk factors for transmission, which paves the way for more-targeted and cost-effective interventions. ### RESULTS On the basis of epidemiological information and exposure diaries on 1178 SARS-CoV-2–infected individuals and their 15,648 close contacts, we developed a series of statistical and computational models to stochastically reconstruct transmission chains, identify risk factors for transmission, and infer the infectiousness profile over the course of a typical infection. We observe overdispersion in the distribution of secondary infections, with 80% of secondary cases traced back to 15% of infections, which indicates substantial transmission heterogeneities. We find that SARS-CoV-2 transmission risk scales positively with the duration of exposure and the closeness of social interactions, with the highest per-contact risk estimated in the household. Lockdown interventions increase transmission risk in families and households, whereas the timely isolation of infected individuals reduces risk across all types of contacts. There is a gradient of increasing susceptibility with age but no significant difference in infectivity by age or clinical severity. Early isolation of SARS-CoV-2–infected individuals drastically alters transmission kinetics, leading to shorter generation and serial intervals and a higher fraction of presymptomatic transmission. After adjusting for the censoring effects of isolation, we find that the infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom onset, with 53% of transmission occurring in the presymptomatic phase in an uncontrolled setting. We then use these results to evaluate the effectiveness of individual-based strategies (case isolation and contact quarantine) both alone and in combination with population-level contact reductions. We find that a plausible parameter space for SARS-CoV-2 control is restricted to scenarios where interventions are synergistically combined, owing to the particular transmission kinetics of this virus. ### CONCLUSION There is considerable heterogeneity in SARS-CoV-2 transmission owing to individual differences in biology and contacts that is modulated by the effects of interventions. We estimate that about half of secondary transmission events occur in the presymptomatic phase of a primary case in uncontrolled outbreaks. Achieving epidemic control requires that isolation and contact-tracing interventions are layered with population-level approaches, such as mask wearing, increased teleworking, and restrictions on large gatherings. Our study also demonstrates the value of conducting high-quality contact-tracing investigations to advance our understanding of the transmission dynamics of an emerging pathogen. ![Figure][2] Transmission chains, contact patterns, and transmission kinetics of SARS-CoV-2 in Hunan, China, based on case and contact-tracing data from Hunan, China. (Top left) One realization of the reconstructed transmission chains, with a histogram representing overdispersion in the distribution of secondary infections. (Top right) Contact matrices of community, social, extended family, and household contacts reveal distinct age profiles. (Bottom) Earlier isolation of primary infections shortens the generation and serial intervals while increasing the relative contribution of transmission in the presymptomatic phase. A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. [1]: /lookup/doi/10.1126/science.abe2424 [2]: pending:yes


Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic

Science

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence peaked in Manaus, Brazil, in May 2020 with a devastating toll on the city's inhabitants, leaving its health services shattered and cemeteries overwhelmed. Buss et al. collected data from blood donors from Manaus and São Paulo, noted when transmission began to fall, and estimated the final attack rates in October 2020 (see the Perspective by Sridhar and Gurdasani). Heterogeneities in immune protection, population structure, poverty, modes of public transport, and uneven adoption of nonpharmaceutical interventions mean that despite a high attack rate, herd immunity may not have been achieved. This unfortunate city has become a sentinel for how natural population immunity could influence future transmission. Events in Manaus reveal what tragedy and harm to society can unfold if this virus is left to run its course. Science , this issue p. [288][1]; see also p. [230][2] Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly in Manaus, the capital of Amazonas state in northern Brazil. The attack rate there is an estimate of the final size of the largely unmitigated epidemic that occurred in Manaus. We use a convenience sample of blood donors to show that by June 2020, 1 month after the epidemic peak in Manaus, 44% of the population had detectable immunoglobulin G (IgG) antibodies. Correcting for cases without a detectable antibody response and for antibody waning, we estimate a 66% attack rate in June, rising to 76% in October. This is higher than in São Paulo, in southeastern Brazil, where the estimated attack rate in October was 29%. These results confirm that when poorly controlled, COVID-19 can infect a large proportion of the population, causing high mortality. [1]: /lookup/doi/10.1126/science.abe9728 [2]: /lookup/doi/10.1126/science.abf7921


How to keep drones flying when a motor fails

Robohub

Robotics researchers at the University of Zurich show how onboard cameras can be used to keep damaged quadcopters in the air and flying stably – even without GPS. As anxious passengers are often reassured, commercial aircrafts can easily continue to fly even if one of the engines stops working. But for drones with four propellers – also known as quadcopters – the failure of one motor is a bigger problem. With only three rotors working, the drone loses stability and inevitably crashes unless an emergency control strategy sets in. Researchers at the University of Zurich and the Delft University of Technology have now found a solution to this problem: They show that information from onboard cameras can be used to stabilize the drone and keep it flying autonomously after one rotor suddenly gives out.


Forehead scanners result in a large number of false, study warns

Daily Mail - Science & tech

Thermal screening to spot people infected with coronavirus is more reliable when scanning the eyeball and fingertip than taking body or forehead measurements. Experts in human physiology published a scientific article on the usefulness of thermometers which scan a person's skin to detect a fever. They say the current process is fundamentally flawed and produces a large number of false negatives, as well as some false positives, and also because not all people infected with the coronavirus develop a fever. A fever is defined as a temperature of greater than or equal to 100.4F (38 C) if spotted outside of a healthcare environment. In healthcare settings, such as a hospital, a fever is technically defined as anything greater than or equal to 100.0F (37.8 C).


Why Horror Films Are More Popular Than Ever - Issue 95: Escape

Nautilus

Horror films were wildly popular on streaming platforms over the past year, and 2020 saw the horror genre take home its largest share of the box office in modern history.1 In a year where the world was stricken by real horrors, why were many people escaping to worlds full of fictional horrors? As odd as it may sound, the fact that people were more anxious in 2020 may be one reason why horror films were so popular. A look at typical horror fans may provide some clues about the nature of this peculiar phenomenon. For example, horror fans often mention their own anxiety and how horror helps them deal with it.


New machine learning workflows for better prediction of psychosis

#artificialintelligence

Scientists from the Max Planck Institute of Psychiatry, led by Nikolaos Koutsouleris, combined psychiatric assessments with machine-learning models that analyze clinical and biological data. Although psychiatrists make very accurate predictions about positive disease outcomes, they might underestimate the frequency of adverse cases that lead to relapses. The algorithmic pattern recognition helps physicians to better predict the course of disease. The results of the study show that it is the combination of artificial and human intelligence that optimizes the prediction of mental illness. "This algorithm enables us to improve the prevention of psychosis, especially in young patients at high risk or with emerging depression, and to intervene in a more targeted and well-timed manner" explains Koutsouleris.


High-performance computing and AI team up for COVID-19 diagnostic imaging

AIHub

The Confederation of Laboratories for Artificial Intelligence Research in Europe (CLAIRE) taskforce on AI & COVID-19 supported the creation of a research group focused on AI-assisted diagnosis of COVID-19 pneumonia. The first results demonstrate the great potential of AI-assisted diagnostic imaging. Furthermore, the impact of the taskforce work is much larger, and it embraces the cross-fertilisation of artificial intelligence (AI) and high-performance computing (HPC): a partnership with rocketing potential for many scientific domains. Through several initiatives aimed at improving the knowledge of COVID-19, containing its diffusion, and limiting its effects, CLAIRE's COVID-19 taskforce was able to organise 150 volunteer scientists, divided into seven groups covering different aspects of how AI could be used to tackle the pandemic. Emanuela Girardi, the co-coordinator of the CLAIRE taskforce on AI & COVID-19, supported the setup of a novel European group to study the diagnosis of COVID-19 pneumonia assisted by artificial intelligence.