Goto

Collaborating Authors

 Overview



Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness

Neural Information Processing Systems

Ensemble approaches for uncertainty estimation have recently been applied to the tasks of misclassification detection, out-of-distribution input detection and adversarial attack detection. Prior Networks have been proposed as an approach to efficiently emulate an ensemble of models for classification by parameterising a Dirichlet prior distribution over output distributions. These models have been shown to outperform alternative ensemble approaches, such as Monte-Carlo Dropout, on the task of out-of-distribution input detection. However, scaling Prior Networks to complex datasets with many classes is difficult using the training criteria originally proposed. This paper makes two contributions. First, we show that the appropriate training criterion for Prior Networks is the reverse KLdivergence between Dirichlet distributions. This addresses issues in the nature of the training data target distributions, enabling prior networks to be successfully trained on classification tasks with arbitrarily many classes, as well as improving out-of-distribution detection performance. Second, taking advantage of this new training criterion, this paper investigates using Prior Networks to detect adversarial attacks and proposes a generalized form of adversarial training. It is shown that the construction of successful adaptive whitebox attacks, which affect the prediction and evade detection, against Prior Networks trained on CIFAR-10 and CIFAR-100 using the proposed approach requires a greater amount of computational effort than against networks defended using standard adversarial training or MC-dropout.


Deep Generative Model for Periodic Graphs

Neural Information Processing Systems

Periodic graphs are graphs consisting of repetitive local structures, such as crystal nets and polygon mesh. Their generative modeling has great potential in real-world applications such as material design and graphics synthesis. Classical models either rely on domain-specific predefined generation principles (e.g., in crystal net design), or follow geometry-based prescribed rules. Recently, deep generative models have shown great promise in automatically generating general graphs. However, their advancement into periodic graphs has not been well explored due to several key challenges in 1) maintaining graph periodicity; 2) disentangling local and global patterns; and 3) efficiency in learning repetitive patterns. To address them, this paper proposes Periodical-Graph Disentangled Variational Auto-encoder (PGD-VAE), a new deep generative model for periodic graphs that can automatically learn, disentangle, and generate local and global graph patterns.


Hierarchical Decision Making by Generating and Following Natural Language Instructions

Neural Information Processing Systems

We explore using natural language instructions as an expressive and compositional representation of complex actions for hierarchical decision making. Rather than directly selecting micro-actions, our agent first generates a plan in natural language, which is then executed by a separate model. We introduce a challenging real-time strategy game environment in which the actions of a large number of units must be coordinated across long time scales. We gather a dataset of 76 thousand pairs of instructions and executions from human play, and train instructor and executor models. Experiments show that models generate intermediate plans in natural langauge significantly outperform models that directly imitate human actions. The compositional structure of language is conducive to learning generalizable action representations.


StressID: a Multimodal Dataset for Stress Identification Michele Panariello 1 Bianca D'Alpaos

Neural Information Processing Systems

StressID is a new dataset specifically designed for stress identification from unimodal and multimodal data. It contains videos of facial expressions, audio recordings, and physiological signals. The video and audio recordings are acquired using an RGB camera with an integrated microphone. The physiological data is composed of electrocardiography (ECG), electrodermal activity (EDA), and respiration signals that are recorded and monitored using a wearable device. This experimental setup ensures a synchronized and high-quality multimodal data collection.



Contents of Appendix A Extended Literature Review 14 B Time Uniform Lasso Analysis 15 C Results on Exploration 18 C.1 ALE 20 C.2 Proof of Results on Exploration 20 D Proof of Regret Bound

Neural Information Processing Systems

We present the bounds in terms of d and M for coherence with the rest of the text, assuming that M = O(p), which is the case when d p. Table 2 compares recent work on sparse linear bandits based on a number of important factors. The regret bounds in Table 2 are simplified to the terms with largest rate of growth, the reader should check the corresponding papers for rigorous results. Some of the mentioned bounds depend on problem-dependent parameters (e.g. To indicate such parameters we use in Table 2, following the notation of Hao et al. [2020]. Note that varies across the rows of the table, and is just an indicator for existence of other terms.




Battle of the Backbones

Neural Information Processing Systems

Neural network based computer vision systems are typically built on a backbone, a pretrained or randomly initialized feature extractor. Several years ago, the default option was an ImageNet-trained convolutional neural network. However, the recent past has seen the emergence of countless backbones pretrained using various algorithms and datasets. While this abundance of choice has led to performance increases for a range of systems, it is difficult for practitioners to make informed decisions about which backbone to choose. Battle of the Backbones (BoB) makes this choice easier by benchmarking a diverse suite of pretrained models, including vision-language models, those trained via self-supervised learning, and the Stable Diffusion backbone, across a diverse set of computer vision tasks ranging from classification to object detection to OOD generalization and more. Furthermore, BoB sheds light on promising directions for the research community to advance computer vision by illuminating strengths and weakness of existing approaches through a comprehensive analysis conducted on more than 1500 training runs. While vision transformers (ViTs) and self-supervised learning (SSL) are increasingly popular, we find that convolutional neural networks pretrained in a supervised fashion on large training sets still perform best on most tasks among the models we consider. Moreover, in apples-to-apples comparisons on the same architectures and similarly sized pretraining datasets, we find that SSL backbones are highly competitive, indicating that future works should perform SSL pretraining with advanced architectures and larger pretraining datasets.