Goto

Collaborating Authors

 Overview


Special Issue on Innovative Applications of AI: Guest Editor's Introduction

AI Magazine

We are pleased to publish this special selection of articles from the Sixteenth Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-04), which occurred July 27-29, 2004 in San Jose, California. IAAI is the premier venue for learning about AI's impact through deployed applications and emerging AI technologies. Case studies of deployed applications with measurable benefits arising from the use of AI technology provide clear evidence of the impact and value of AI technology to today's world. The emerging applications track features technologies that are rapidly maturing to the point of application. The seven articles selected for this special issue are extended versions of the papers that appeared at the conference. Four of the articles describe deployed applications that are already in use in the field. The other three articles, which are from the emerging technology track, were selected because they are particularly innovative and show great potential for deployment.


A Framework for Sequential Planning in Multi-Agent Settings

Journal of Artificial Intelligence Research

This paper extends the framework of partially observable Markov decision processes (POMDPs) to multi-agent settings by incorporating the notion of agent models into the state space. Agents maintain beliefs over physical states of the environment and over models of other agents, and they use Bayesian updates to maintain their beliefs over time. The solutions map belief states to actions. Models of other agents may include their belief states and are related to agent types considered in games of incomplete information. We express the agents' autonomy by postulating that their models are not directly manipulable or observable by other agents. We show that important properties of POMDPs, such as convergence of value iteration, the rate of convergence, and piece-wise linearity and convexity of the value functions carry over to our framework. Our approach complements a more traditional approach to interactive settings which uses Nash equilibria as a solution paradigm. We seek to avoid some of the drawbacks of equilibria which may be non-unique and do not capture off-equilibrium behaviors. We do so at the cost of having to represent, process and continuously revise models of other agents. Since the agent's beliefs may be arbitrarily nested, the optimal solutions to decision making problems are only asymptotically computable. However, approximate belief updates and approximately optimal plans are computable. We illustrate our framework using a simple application domain, and we show examples of belief updates and value functions.


Description Logics and Planning

AI Magazine

This article surveys previous work on combining planning techniques with expressive representations of knowledge in description logics to reason about tasks, plans, and goals. Description logics can reason about the logical definition of a class and automatically infer class-subclass subsumption relations as well as classify instances into classes based on their definitions. Descriptions of actions, plans, and goals can be exploited during plan generation, plan recognition, or plan evaluation. These techniques should be of interest to planning practitioners working on knowledge-rich application domains. Another emerging use of these techniques is the semantic web, where current ontology languages based on description logics need to be extended to reason about goals and capabilities for web services and agents.


Intelligent Technology for an Aging Population: The Use of AI to Assist Elders with Cognitive Impairment

AI Magazine

Today, approximately 10 percent of the world's population is over the age of 60; by 2050 this proportion will have more than doubled. Moreover, the greatest rate of increase is amongst the "oldest old," people aged 85 and over. While many older adults remain healthy and productive, overall this segment of the population is subject to physical and cognitive impairment at higher rates than younger people. This article surveys new technologies that incorporate artificial intelligence techniques to support older adults and help them cope with the changes of aging, in particular with cognitive decline.


An Improved Search Algorithm for Optimal Multiple-Sequence Alignment

Journal of Artificial Intelligence Research

Multiple sequence alignment (MSA) is a ubiquitous problem in computational biology. Although it is NP-hard to find an optimal solution for an arbitrary number of sequences, due to the importance of this problem researchers are trying to push the limits of exact algorithms further. Since MSA can be cast as a classical path finding problem, it is attracting a growing number of AI researchers interested in heuristic search algorithms as a challenge with actual practical relevance. In this paper, we first review two previous, complementary lines of research. Based on Hirschberg's algorithm, Dynamic Programming needs O(kN^(k-1)) space to store both the search frontier and the nodes needed to reconstruct the solution path, for k sequences of length N. Best first search, on the other hand, has the advantage of bounding the search space that has to be explored using a heuristic. However, it is necessary to maintain all explored nodes up to the final solution in order to prevent the search from re-expanding them at higher cost. Earlier approaches to reduce the Closed list are either incompatible with pruning methods for the Open list, or must retain at least the boundary of the Closed list. In this article, we present an algorithm that attempts at combining the respective advantages; like A* it uses a heuristic for pruning the search space, but reduces both the maximum Open and Closed size to O(kN^(k-1)), as in Dynamic Programming. The underlying idea is to conduct a series of searches with successively increasing upper bounds, but using the DP ordering as the key for the Open priority queue. With a suitable choice of thresholds, in practice, a running time below four times that of A* can be expected. In our experiments we show that our algorithm outperforms one of the currently most successful algorithms for optimal multiple sequence alignments, Partial Expansion A*, both in time and memory. Moreover, we apply a refined heuristic based on optimal alignments not only of pairs of sequences, but of larger subsets. This idea is not new; however, to make it practically relevant we show that it is equally important to bound the heuristic computation appropriately, or the overhead can obliterate any possible gain. Furthermore, we discuss a number of improvements in time and space efficiency with regard to practical implementations. Our algorithm, used in conjunction with higher-dimensional heuristics, is able to calculate for the first time the optimal alignment for almost all of the problems in Reference 1 of the benchmark database BAliBASE.


Semantic Integration Research in the Database Community: A Brief Survey

AI Magazine

Semantic integration has been a long-standing challenge for the database community. It has received steady attention over the past two decades, and has now become a prominent area of database research. In this article, we first review database applications that require semantic integration and discuss the difficulties underlying the integration process. We then describe recent progress and identify open research issues. We focus in particular on schema matching, a topic that has received much attention in the database community, but also discuss data matching (for example, tuple deduplication) and open issues beyond the match discovery context (for example, reasoning with matches, match verification and repair, and reconciling inconsistent data values). For previous surveys of database research on semantic integration, see Rahm and Bernstein (2001); Ouksel and Seth (1999); and Batini, Lenzerini, and Navathe (1986).


Ontology Translation for Interoperability Among Semantic Web Services

AI Magazine

Research on semantic web services promises greater interoperability among software agents and web services by enabling content-based automated service discovery and interaction and by utilizing . Although this is to be based on use of shared ontologies published on the semantic web, services produced and described by different developers may well use different, perhaps partly overlapping, sets of ontologies. Interoperability will depend on ontology mappings and architectures supporting the associated translation processes. The question we ask is, does the traditional approach of introducing mediator agents to translate messages between requestors and services work in such an open environment? This article reviews some of the processing assumptions that were made in the development of the semantic web service modeling ontology OWL-S and argues that, as a practical matter, the translation function cannot always be isolated in mediators. Ontology mappings need to be published on the semantic web just as ontologies themselves are. The translation for service discovery, service process model interpretation, task negotiation, service invocation, and response interpretation may then be distributed to various places in the architecture so that translation can be done in the specific goal-oriented informational contexts of the agents performing these processes. We present arguments for assigning translation responsibility to particular agents in the cases of service invocation, response translation, and matchmaking.


Automatic Ontology Matching Using Application Semantics

AI Magazine

We propose the use of application semantics to enhance the process of semantic reconciliation. Application semantics involves those elements of business reasoning that affect the way concepts are presented to users: their layout, and so on. In particular, we pursue in this article the notion of precedence, in which temporal constraints determine the order in which concepts are presented to the user. Existing matching algorithms use either syntactic means (such as term matching and domain matching) or model semantic means, the use of structural information that is provided by the specific data model to enhance the matching process. The novelty of our approach lies in proposing a class of matching techniques that takes advantage of ontological structures and application semantics. As an example, the use of precedence to reflect business rules has not been applied elsewhere, to the best of our knowledge. We have tested the process for a variety of web sites in domains such as car rentals and airline reservations, and we share our experiences with precedence and its limitations.


Feature Selection in Clustering Problems

Neural Information Processing Systems

A novel approach to combining clustering and feature selection is presented. It implements a wrapper strategy for feature selection, in the sense that the features are directly selected by optimizing the discriminative power of the used partitioning algorithm. On the technical side, we present an efficient optimization algorithm with guaranteed local convergence property. The only free parameter of this method is selected by a resampling-based stability analysis. Experiments with real-world datasets demonstrate that our method is able to infer both meaningful partitions and meaningful subsets of features.


GPPS: A Gaussian Process Positioning System for Cellular Networks

Neural Information Processing Systems

In this article, we present a novel approach to solving the localization problem in cellular networks. The goal is to estimate a mobile user's position, based on measurements of the signal strengths received from network base stations. Our solution works by building Gaussian process models for the distribution of signal strengths, as obtained in a series of calibration measurements. In the localization stage, the user's position canbe estimated by maximizing the likelihood of received signal strengths with respect to the position. We investigate the accuracy of the proposed approach on data obtained within a large indoor cellular network.