Text Book


Statistics Books for Machine Learning

#artificialintelligence

Statistical methods are used at each step in an applied machine learning project. This means it is important to have a strong grasp of the fundamentals of the key findings from statistics and a working knowledge of relevant statistical methods. Unfortunately, statistics is not covered in many computer science and software engineering degree programs. Even if it is, it may be taught in a bottom-up, theory-first manner, making it unclear which parts are relevant on a given project. In this post, you will discover some top introductory books to statistics that I recommend if you are looking to jump-start your understanding of applied statistics.


24 Best Python Courses, Books, and Online Tutorials [2018] JA DIRECTIVES

#artificialintelligence

Are you completely new to learn Python programming language? If yes then we assume you will be looking for information about what is the best way to learn python language? Here are some best Python courses and python online course certification programs will help you to become an expert in Python programming language. Don't be afraid, you will be happy to know that if you have a little idea about programming than it's easy for beginners like you to use and learn, so let get started! Generally installing Python is easy.


A high-bias, low-variance introduction to Machine Learning for physicists

arXiv.org Machine Learning

Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and application. The purpose of this review is to provide an introduction to the core concepts and tools of machine learning in a manner easily understood and intuitive to physicists. The review begins by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff, overfitting, regularization, and generalization before moving on to more advanced topics in both supervised and unsupervised learning. Topics covered in the review include ensemble models, deep learning and neural networks, clustering and data visualization, energy-based models (including MaxEnt models and Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize the many natural connections between ML and statistical physics. A notable aspect of the review is the use of Python notebooks to introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising Model and Monte-Carlo simulations of supersymmetric decays of proton-proton collisions). We conclude with an extended outlook discussing possible uses of machine learning for furthering our understanding of the physical world as well as open problems in ML where physicists maybe able to contribute. (Notebooks are available at https://physics.bu.edu/~pankajm/MLnotebooks.html )


Artificial Intelligence -- A Modern Approach A Review

AI Magazine

The eight sections are (1) Artificial Intelligence (introductory material); (2) Problem-Solving (search and game playing); (3) Knowledge and Reasoning (propositional and predicate logic, inference techniques, knowledge representation); (4) Acting Logically (planning); (5) Uncertain Knowledge and Reasoning (probabilistic reasoning, Bayesian nets, decision-theoretic techniques); (6) Learning (inductive learning, neural nets, reinforcement learning); (7) Communicating, Perceiving, and Acting (natural language processing, computer vision, robotics); and (8) Conclusions (philosophical foundations and summary). What makes this textbook so good? First, it is remarkably comprehensive. In the preface, the authors suggest several alternative paths through the book that could serve as the basis of a one-semester course. At the University of Pittsburgh, my colleagues and I cover roughly the first half of the book (Sections 1-4) in the firstsemester introductory graduate AI course, covering most of Sections 5 through 8 in a second-semester course.



How NoSQL Fundamentally Changed Machine Learning

#artificialintelligence

I would like to add on to the post. Image processing is a field that has existed on its own longer than machine learning (ie, it predates machine learning decades before), its been taught mainly as a branch of engineering (electrical & electronics) & to some lesser degree also taught in computer science & physics' courses. Its only in the last decade or so, that image processing includes machine learning topics' for image recognition & understanding. The latest edition (3rd) has an added chapter on "Object Recognition" which wasn't available in the 1st & 2nd edition. The last time I passed through my local university bookstore (about a year ago), this textbook is stocked because its still currently a prescribed textbook for final year Electrical engineering courses.


Introductory Textbook on Artificial Intelligence

AITopics Original Links

To ensure that readers fully understand the topic and its applications, the authors provide motivating examples throughout. AI in Practice boxes appear in each chapter, demonstrating real-world uses of artificial intelligence by NASA, General Motors Corporation, Microsoft Corporation, and other companies. LISP Implementation appendices are found at the end of most chapters, providing fully-documented implementations of important algorithms. These are carefully coordinated with the discussions in the chapters making it easy for students to complete computational experiments. Plus, the text features summaries, exercises, and background sections describing related work at the end of each chapter.



Recommender Systems: New Comprehensive Textbook by Charu Aggarwal

#artificialintelligence

This book covers the topic of recommender systems comprehensively, starting with the fundamentals and then exploring the advanced topics. Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: The context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed.


How NoSQL Fundamentally Changed Machine Learning

@machinelearnbot

I would like to add on to the post. Image processing is a field that has existed on its own longer than machine learning (ie, it predates machine learning decades before), its been taught mainly as a branch of engineering (electrical & electronics) & to some lesser degree also taught in computer science & physics' courses. Its only in the last decade or so, that image processing includes machine learning topics' for image recognition & understanding. The latest edition (3rd) has an added chapter on "Object Recognition" which wasn't available in the 1st & 2nd edition. The last time I passed through my local university bookstore (about a year ago), this textbook is stocked because its still currently a prescribed textbook for final year Electrical engineering courses.