Goto

Collaborating Authors

 Country


Assessing and Improving Neural Network Predictions by the Bootstrap Algorithm

Neural Information Processing Systems

The bootstrap method offers an computation intensive alternative to estimate the predictive distribution for a neural network even if the analytic derivation is intractable. The available asymptotic results show that it is valid for a large number of linear, nonlinear and even nonparametric regression problems. It has the potential to model the distribution of estimators to a higher precision than the usual normal asymptotics. It even may be valid if the normal asymptotics fail. However, the theoretical properties of bootstrap procedures for neural networks - especially nonlinear models - have to be investigated more comprehensively.


Transient Signal Detection with Neural Networks: The Search for the Desired Signal

Neural Information Processing Systems

Matched filtering has been one of the most powerful techniques employed for transient detection. Here we will show that a dynamic neural network outperforms the conventional approach. When the artificial neural network (ANN) is trained with supervised learning schemes there is a need to supply the desired signal for all time, although we are only interested in detecting the transient. In this paper we also show the effects on the detection agreement of different strategies to construct the desired signal. The extension of the Bayes decision rule (011 desired signal), optimal in static classification, performs worse than desired signals constructed by random noise or prediction during the background.


Single-Iteration Threshold Hamming Networks

Neural Information Processing Systems

The HN calculates the Hamming distance between the input pattern and each memory pattern, and selects the memory with the smallest distance. It is composed of two subnets: The similarity subnet, consisting of an n-neuron input layer connected with an m-neuron memory layer, calculates the number of equal bits between the input and each memory pattern. The winner-take-all (WTA) subnet, consisting of a fully connected m-neuron topology, selects the memory neuron that best matches the input pattern.


Interposing an ontogenetic model between Genetic Algorithms and Neural Networks

Neural Information Processing Systems

The relationships between learning, development and evolution in Nature is taken seriously, to suggest a model of the developmental process whereby the genotypes manipulated by the Genetic Algorithm (GA) might be expressed to form phenotypic neural networks (NNet) that then go on to learn. ONTOL is a grammar for generating polynomial NN ets for time-series prediction. Genomes correspond to an ordered sequence of ONTOL productions and define a grammar that is expressed to generate a NNet. The NNet's weights are then modified by learning, and the individual's prediction error is used to determine GA fitness. A new gene doubling operator appears critical to the formation of new genetic alternatives in the preliminary but encouraging results presented.


Reinforcement Learning Applied to Linear Quadratic Regulation

Neural Information Processing Systems

Recent research on reinforcement learning has focused on algorithms based on the principles of Dynamic Programming (DP). One of the most promising areas of application for these algorithms is the control of dynamical systems, and some impressive results have been achieved. However, there are significant gaps between practice and theory. In particular, there are no con vergence proofs for problems with continuous state and action spaces, or for systems involving nonlinear function approximators (such as multilayer perceptrons). This paper presents research applying DPbased reinforcement learning theory to Linear Quadratic Regulation (LQR), an important class of control problems involving continuous state and action spaces and requiring a simple type of nonlinear function approximator. We describe an algorithm based on Q-Iearning that is proven to converge to the optimal controller for a large class of LQR problems. We also describe a slightly different algorithm that is only locally convergent to the optimal Q-function, demonstrating one of the possible pitfalls of using a nonlinear function approximator with DPbased learning.


A Formal Model of the Insect Olfactory Macroglomerulus: Simulations and Analytic Results

Neural Information Processing Systems

It is known from biological data that the response patterns of interneurons in the olfactory macroglomerulus (MGC) of insects are of central importance for the coding of the olfactory signal. We propose an analytically tractable model of the MGC which allows us to relate the distribution of response patterns to the architecture of the network.


Improving Convergence in Hierarchical Matching Networks for Object Recognition

Neural Information Processing Systems

We are interested in the use of analog neural networks for recognizing visual objects. Objects are described by the set of parts they are composed of and their structural relationship. Structural models are stored in a database and the recognition problem reduces to matching data to models in a structurally consistent way. The object recognition problem is in general very difficult in that it involves coupled problems of grouping, segmentation and matching. We limit the problem here to the simultaneous labelling of the parts of a single object and the determination of analog parameters. This coupled problem reduces to a weighted match problem in which an optimizing neural network must minimize E(M, p) LO'i MO'i WO'i(p), where the {MO'd are binary match variables for data parts i to model parts a and {Wai(P)} are weights dependent on parameters p.


A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization

Neural Information Processing Systems

A parallel stochastic algorithm is investigated for error-descent learning and optimization in deterministic networks of arbitrary topology. No explicit information about internal network structure is needed. The method is based on the model-free distributed learning mechanism of Dembo and Kailath. A modified parameter update rule is proposed by which each individual parameter vector perturbation contributes a decrease in error. A substantially faster learning speed is hence allowed. Furthermore, the modified algorithm supports learning time-varying features in dynamical networks. We analyze the convergence and scaling properties of the algorithm, and present simulation results for dynamic trajectory learning in recurrent networks.


Learning Sequential Tasks by Incrementally Adding Higher Orders

Neural Information Processing Systems

An incremental, higher-order, non-recurrent network combines two properties found to be useful for learning sequential tasks: higherorder connections and incremental introduction of new units. The network adds higher orders when needed by adding new units that dynamically modify connection weights. Since the new units modify the weights at the next time-step with information from the previous step, temporal tasks can be learned without the use of feedback, thereby greatly simplifying training. Furthermore, a theoretically unlimited number of units can be added to reach into the arbitrarily distant past. Experiments with the Reber grammar have demonstrated speedups of two orders of magnitude over recurrent networks.