Goto

Collaborating Authors

 Country


Convergence of Stochastic Iterative Dynamic Programming Algorithms

Neural Information Processing Systems

Increasing attention has recently been paid to algorithms based on dynamic programming (DP) due to the suitability of DP for learning problems involving control. In stochastic environments where the system being controlled is only incompletely known, however, a unifying theoretical account of these methods has been missing. In this paper we relate DPbased learning algorithms to the powerful techniques of stochastic approximation via a new convergence theorem, enabling us to establish a class of convergent algorithms to which both TD("\) and Q-Iearning belong. 1 INTRODUCTION Learning to predict the future and to find an optimal way of controlling it are the basic goals of learning systems that interact with their environment. A variety of algorithms are currently being studied for the purposes of prediction and control in incompletely specified, stochastic environments. Here we consider learning algorithms defined in Markov environments. There are actions or controls (u) available for the learner that affect both the state transition probabilities, and the probability distribution for the immediate, state dependent costs (Ci(u)) incurred by the learner.


Analyzing Cross-Connected Networks

Neural Information Processing Systems

The nonlinear complexities of neural networks make network solutions difficult to understand. Sanger's contribution analysis is here extended to the analysis of networks automatically generated by the cascadecorrelation learning algorithm. Because such networks have cross connections that supersede hidden layers, standard analyses of hidden unit activation patterns are insufficient. A contribution is defined as the product of an output weight and the associated activation on the sending unit, whether that sending unit is an input or a hidden unit, multiplied by the sign of the output target for the current input pattern. Intercorrelations among contributions, as gleaned from the matrix of contributions x input patterns, can be subjected to principal components analysis (PCA) to extract the main features of variation in the contributions. Such an analysis is applied to three problems, continuous XOR, arithmetic comparison, and distinguishing between two interlocking spirals. In all three cases, this technique yields useful insights into network solutions that are consistent across several networks.


Foraging in an Uncertain Environment Using Predictive Hebbian Learning

Neural Information Processing Systems

Survival is enhanced by an ability to predict the availability of food, the likelihood of predators, and the presence of mates. We present a concrete model that uses diffuse neurotransmitter systems to implement a predictive version of a Hebb learning rule embedded in a neural architecture based on anatomical and physiological studies on bees. The model captured the strategies seen in the behavior of bees and a number of other animals when foraging in an uncertain environment. The predictive model suggests a unified way in which neuromodulatory influences can be used to bias actions and control synaptic plasticity. Successful predictions enhance adaptive behavior by allowing organisms to prepare for future actions, rewards, or punishments. Moreover, it is possible to improve upon behavioral choices if the consequences of executing different actions can be reliably predicted. Although classical and instrumental conditioning results from the psychological literature [1] demonstrate that the vertebrate brain is capable of reliable prediction, how these predictions are computed in brains is not yet known. The brains of vertebrates and invertebrates possess small nuclei which project axons throughout large expanses of target tissue and deliver various neurotransmitters such as dopamine, norepinephrine, and acetylcholine [4]. The activity in these systems may report on reinforcing stimuli in the world or may reflect an expectation of future reward [5, 6,7,8].


Adaptive knot Placement for Nonparametric Regression

Neural Information Processing Systems

We show how an "Elman" network architecture, constructed from recurrently connected oscillatory associative memory network modules, can employ selective "attentional" control of synchronization to direct the flow of communication and computation within the architecture to solve a grammatical inference problem. Previously we have shown how the discrete time "Elman" network algorithm can be implemented in a network completely described by continuous ordinary differential equations. The time steps (machine cycles) of the system are implemented by rhythmic variation (clocking) of a bifurcation parameter. In this architecture, oscillation amplitude codes the information content or activity of a module (unit), whereas phase and frequency are used to "softwire" the network. Only synchronized modules communicate by exchanging amplitude information; the activity of non-resonating modules contributes incoherent crosstalk noise. Attentional control is modeled as a special subset of the hidden modules with ouputs which affect the resonant frequencies of other hidden modules. They control synchrony among the other modules and direct the flow of computation (attention) to effect transitions between two subgraphs of a thirteen state automaton which the system emulates to generate a Reber grammar. The internal crosstalk noise is used to drive the required random transitions of the automaton.


Optimal Signalling in Attractor Neural Networks

Neural Information Processing Systems

It is well known that a given cortical neuron can respond with a different firing pattern for the same synaptic input, depending on its firing history and on the effects of modulator transmitters (see [Connors and Gutnick, 1990] for a review). The time span of different channel conductances is very broad, and the influence of some ionic currents varies with the history of the membrane potential [Lytton, 1991]. Motivated by the history-dependent nature of neuronal firing, we continue.our


Development of Orientation and Ocular Dominance Columns in Infant Macaques

Neural Information Processing Systems

Maps of orientation preference and ocular dominance were recorded optically from the cortices of 5 infant macaque monkeys, ranging in age from 3.5 to 14 weeks. In agreement with previous observations, we found that basic features of orientation and ocular dominance maps, as well as correlations between them, are present and robust by 3.5 weeks of age. We did observe changes in the strength of ocular dominance signals, as well as in the spacing of ocular dominance bands, both of which increased steadily between 3.5 and 14 weeks of age. The latter finding suggests that the adult spacing of ocular dominance bands depends on cortical growth in neonatal animals. Since we found no corresponding increase in the spacing of orientation preferences, however, there is a possibility that the orientation preferences of some cells change as the cortical surface expands. Since correlations between the patterns of orientation selectivity and ocular dominance are present at an age, when the visual system is still immature, it seems more likely that their development may be an innate process and may not require extensive visual experience.


Locally Adaptive Nearest Neighbor Algorithms

Neural Information Processing Systems

Four versions of a k-nearest neighbor algorithm with locally adaptive k are introduced and compared to the basic k-nearest neighbor algorithm (kNN). Locally adaptive kNN algorithms choose the value of k that should be used to classify a query by consulting the results of cross-validation computations in the local neighborhood of the query. Local kNN methods are shown to perform similar to kNN in experiments with twelve commonly used data sets. Encouraging results in three constructed tasks show that local methods can significantly outperform kNN in specific applications. Local methods can be recommended for online learning and for applications where different regions of the input space are covered by patterns solving different sub-tasks.



Bayesian Backpropagation Over I-O Functions Rather Than Weights

Neural Information Processing Systems

The conventional Bayesian justification of backprop is that it finds the MAP weight vector. As this paper shows, to find the MAP io function instead one must add a correction tenn to backprop. That tenn biases one towards io functions with small description lengths, and in particular favors (some kinds of) feature-selection, pruning, and weight-sharing.


Computational Elements of the Adaptive Controller of the Human Arm

Neural Information Processing Systems

We consider the problem of how the CNS learns to control dynamics of a mechanical system. By using a paradigm where a subject's hand interacts with a virtual mechanical environment, we show that learning control is via composition of a model of the imposed dynamics. Some properties of the computational elements with which the CNS composes this model are inferred through the generalization capabilities of the subject outside the training data.