Country
Learning to Predict Visibility and Invisibility from Occlusion Events
Marshall, Jonathan A., Alley, Richard K., Hubbard, Robert S.
This paper presents a self-organizing neural network that learns to detect, represent, and predict the visibility and invisibility relationships that arise during occlusion events, after a period of exposure to motion sequences containing occlusion and disocclusion events. The network develops two parallel opponent channels or "chains" of lateral excitatory connections for every resolvable motion trajectory. One channel, the "On" chain or "visible" chain, is activated when a moving stimulus is visible. The other channel, the "Off" chain or "invisible" chain, carries a persistent, amodal representation that predicts the motion of a formerly visible stimulus that becomes invisible due to occlusion. The learning rule uses disinhibition from the On chain to trigger learning in the Off chain.
Improving Elevator Performance Using Reinforcement Learning
Crites, Robert H., Barto, Andrew G.
This paper describes the application of reinforcement learning (RL) to the difficult real world problem of elevator dispatching. The elevator domain poses a combination of challenges not seen in most RL research to date. Elevator systems operate in continuous state spaces and in continuous time as discrete event dynamic systems. Their states are not fully observable and they are nonstationary due to changing passenger arrival rates. In addition, we use a team of RL agents, each of which is responsible for controlling one elevator car.
Investment Learning with Hierarchical PSOMs
Walter, Jรถrg A., Ritter, Helge
We propose a hierarchical scheme for rapid learning of context dependent "skills" that is based on the recently introduced "Parameterized Self Organizing Map" ("PSOM"). The underlying idea is to first invest some learning effort to specialize the system into a rapid learner for a more restricted range of contexts. The specialization is carried out by a prior "investment learning stage", during which the system acquires a set of basis mappings or "skills" for a set of prototypical contexts. Adaptation of a "skill" to a new context can then be achieved by interpolating in the space of the basis mappings and thus can be extremely rapid. We demonstrate the potential of this approach for the task of a 3D visuomotor map for a Puma robot and two cameras. This includes the forward and backward robot kinematics in 3D end effector coordinates, the 2D 2D retina coordinates and also the 6D joint angles. After the investment phase the transformation can be learned for a new camera setup with a single observation.
A New Learning Algorithm for Blind Signal Separation
Amari, Shun-ichi, Cichocki, Andrzej, Yang, Howard Hua
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural network like model. The validity of the new learning algorithm are verified by computer simulations.
A Smoothing Regularizer for Recurrent Neural Networks
We derive a smoothing regularizer for recurrent network models by requiring robustness in prediction performance to perturbations of the training data. The regularizer can be viewed as a generalization of the first order Tikhonov stabilizer to dynamic models. The closed-form expression of the regularizer covers both time-lagged and simultaneous recurrent nets, with feedforward nets and onelayer linear nets as special cases. We have successfully tested this regularizer in a number of case studies and found that it performs better than standard quadratic weight decay. 1 Introd uction One technique for preventing a neural network from overfitting noisy data is to add a regularizer to the error function being minimized. Regularizers typically smooth the fit to noisy data. Well-established techniques include ridge regression, see (Hoerl & Kennard 1970), and more generally spline smoothing functions or Tikhonov stabilizers that penalize the mth-order squared derivatives of the function being fit, as in (Tikhonov & Arsenin 1977), (Eubank 1988), (Hastie & Tibshirani 1990) and (Wahba 1990). Thes(-ilethods have recently been extended to networks of radial basis functions (Girosi, Jones & Poggio 1995), and several heuristic approaches have been developed for sigmoidal neural networks, for example, quadratic weight decay (Plaut, Nowlan & Hinton 1986), weight elimination (Scalettar & Zee 1988),(Chauvin 1990),(Weigend, Rumelhart & Huberman 1990) and soft weight sharing (Nowlan & Hinton 1992).
On Neural Networks with Minimal Weights
Bohossian, Vasken, Bruck, Jehoshua
Linear threshold elements are the basic building blocks of artificial neural networks. A linear threshold element computes a function that is a sign of a weighted sum of the input variables. The weights are arbitrary integers; actually, they can be very big integers-exponential in the number of the input variables. However, in practice, it is difficult to implement big weights. In the present literature a distinction is made between the two extreme cases: linear threshold functions with polynomial-size weights as opposed to those with exponential-size weights.
A Neural Network Model of 3-D Lightness Perception
Pessoa, Luiz, Ross, William D.
A neural network model of 3-D lightness perception is presented which builds upon the FACADE Theory Boundary Contour System/Feature Contour System of Grossberg and colleagues. Early ratio encoding by retinal ganglion neurons as well as psychophysical results on constancy across different backgrounds (background constancy) are used to provide functional constraints to the theory and suggest a contrast negation hypothesis which states that ratio measures between coplanar regions are given more weight in the determination of lightness of the respective regions.
Adaptive Mixture of Probabilistic Transducers
We introduce and analyze a mixture model for supervised learning of probabilistic transducers. We devise an online learning algorithm that efficiently infers the structure and estimates the parameters of each model in the mixture. Theoretical analysis and comparative simulations indicate that the learning algorithm tracks the best model from an arbitrarily large (possibly infinite) pool of models. We also present an application of the model for inducing a noun phrase recognizer.
Classifying Facial Action
Bartlett, Marian Stewart, Viola, Paul A., Sejnowski, Terrence J., Golomb, Beatrice A., Larsen, Jan, Hager, Joseph C., Ekman, Paul
The Facial Action Coding System, (FACS), devised by Ekman and Friesen (1978), provides an objective meanS for measuring the facial muscle contractions involved in a facial expression. In this paper, we approach automated facial expression analysis by detecting and classifying facial actions. We generated a database of over 1100 image sequences of 24 subjects performing over 150 distinct facial actions or action combinations. We compare three different approaches to classifying the facial actions in these images: Holistic spatial analysis based on principal components of graylevel images; explicit measurement of local image features such as wrinkles; and template matching with motion flow fields. On a dataset containing six individual actions and 20 subjects, these methods had 89%, 57%, and 85% performances respectively for generalization to novel subjects. When combined, performance improved to 92%.
Control of Selective Visual Attention: Modeling the "Where" Pathway
Intermediate and higher vision processes require selection of a subset of the available sensory information before further processing. of a spatiallyUsually, this selection is implemented in the form circumscribed region of the visual field, the so-called "focus of attention" which scans the visual scene dependent on the input and of the subject. We here present a model foron the attentional state of the focus of attention in primates, based on a saliencythe control This mechanism is not only expected to model the functionalitymap. of biological vision but also to be essential for the understanding of complex scenes in machine vision.