Goto

Collaborating Authors

 Country


The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces

Neural Information Processing Systems

We present an unsupervised algorithm for registering 3D surface scans of an object undergoing significant deformations. Our algorithm does not need markers, nor does it assume prior knowledge about object shape, the dynamics of its deformation, or scan alignment.


Real-Time Pitch Determination of One or More Voices by Nonnegative Matrix Factorization

Neural Information Processing Systems

An auditory "scene", composed of overlapping acoustic sources, can be viewed as a complex object whose constituent parts are the individual sources. Pitch is known to be an important cue for auditory scene analysis. In this paper, with the goal of building agents that operate in human environments, we describe a real-time system to identify the presence of one or more voices and compute their pitch. The signal processing in the front end is based on instantaneous frequency estimation, a method for tracking the partials of voiced speech, while the pattern-matching in the back end is based on nonnegative matrix factorization, an unsupervised algorithm for learning the parts of complex objects. While supporting a framework to analyze complicated auditory scenes, our system maintains real-time operability and state-of-the-art performance in clean speech.


Active Learning for Anomaly and Rare-Category Detection

Neural Information Processing Systems

We introduce a novel active-learning scenario in which a user wants to work with a learning algorithm to identify useful anomalies. These are distinguished from the traditional statistical definition of anomalies as outliers or merely ill-modeled points. Our distinction is that the usefulness of anomalies is categorized subjectively by the user. We make two additional assumptions. First, there exist extremely few useful anomalies to be hunted down within a massive dataset.



Semi-supervised Learning on Directed Graphs

Neural Information Processing Systems

Given a directed graph in which some of the nodes are labeled, we investigate the question of how to exploit the link structure of the graph to infer the labels of the remaining unlabeled nodes. To that extent we propose a regularization framework for functions defined over nodes of a directed graph that forces the classification function to change slowly on densely linked subgraphs. A powerful, yet computationally simple classification algorithm is derived within the proposed framework. The experimental evaluation on real-world Web classification problems demonstrates encouraging results that validate our approach.


Similarity and Discrimination in Classical Conditioning: A Latent Variable Account

Neural Information Processing Systems

We propose a probabilistic, generative account of configural learning phenomena in classical conditioning. Configural learning experiments probe how animals discriminate and generalize between patterns of simultaneously presented stimuli (such as tones and lights) that are differentially predictive of reinforcement. Previous models of these issues have been successful more on a phenomenological than an explanatory level: they reproduce experimental findings but, lacking formal foundations, provide scant basis for understanding why animals behave as they do. We present a theory that clarifies seemingly arbitrary aspects of previous models while also capturing a broader set of data.


Maximum Margin Clustering

Neural Information Processing Systems

We propose a new method for clustering based on finding maximum margin hyperplanes through data. By reformulating the problem in terms of the implied equivalence relation matrix, we can pose the problem as a convex integer program. Although this still yields a difficult computational problem, the hard-clustering constraints can be relaxed to a soft-clustering formulation which can be feasibly solved with a semidefinite program. Since our clustering technique only depends on the data through the kernel matrix, we can easily achieve nonlinear clusterings in the same manner as spectral clustering. Experimental results show that our maximum margin clustering technique often obtains more accurate results than conventional clustering methods. The real benefit of our approach, however, is that it leads naturally to a semi-supervised training method for support vector machines. By maximizing the margin simultaneously on labeled and unlabeled training data, we achieve state of the art performance by using a single, integrated learning principle.


An Auditory Paradigm for Brain-Computer Interfaces

Neural Information Processing Systems

Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a braincomputer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged eventrelated potentials, we show that an untrained user's EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.


Integrating Topics and Syntax

Neural Information Processing Systems

Statistical approaches to language learning typically focus on either short-range syntactic dependencies or long-range semantic dependencies between words. We present a generative model that uses both kinds of dependencies, and can be used to simultaneously find syntactic classes and semantic topics despite having no representation of syntax or semantics beyond statistical dependency. This model is competitive on tasks like part-of-speech tagging and document classification with models that exclusively use short-and long-range dependencies respectively.


Mistake Bounds for Maximum Entropy Discrimination

Neural Information Processing Systems

We establish a mistake bound for an ensemble method for classification based on maximizing the entropy of voting weights subject to margin constraints. The bound is the same as a general bound proved for the Weighted Majority Algorithm, and similar to bounds for other variants of Winnow. We prove a more refined bound that leads to a nearly optimal algorithm for learning disjunctions, again, based on the maximum entropy principle. We describe a simplification of the online maximum entropy method in which, after each iteration, the margin constraints are replaced with a single linear inequality. The simplified algorithm, which takes a similar form to Winnow, achieves the same mistake bounds.