Goto

Collaborating Authors

 Country


Retrieved context and the discovery of semantic structure

Neural Information Processing Systems

Semantic memory refers to our knowledge of facts and relationships between concepts. A successful semantic memory depends on inferring relationships between items that are not explicitly taught. Recent mathematical modeling of episodic memory argues that episodic recall relies on retrieval of a gradually-changing representation of temporal context. We show that retrieved context enables the development of a global memory space that reflects relationships between all items that have been previously learned. When newly-learned information is integrated into this structure, it is placed in some relationship to all other items, even if that relationship has not been explicitly learned. We demonstrate this effect for global semantic structures shaped topologically as a ring, and as a two-dimensional sheet. We also examined the utility of this learning algorithm for learning a more realistic semantic space by training it on a large pool of synonym pairs. Retrieved context enabled the model to "infer" relationships between synonym pairs that had not yet been presented.


Efficient Bayesian Inference for Dynamically Changing Graphs

Neural Information Processing Systems

Motivated by stochastic systems in which observed evidence and conditional dependencies between states of the network change over time, and certain quantities of interest (marginal distributions, likelihood estimates etc.) must be updated, we study the problem of adaptive inference in tree-structured Bayesian networks. We describe an algorithm for adaptive inference that handles a broad range of changes to the network and is able to maintain marginal distributions, MAP estimates, and data likelihoods in all expected logarithmic time. We give an implementation of our algorithm and provide experiments that show that the algorithm can yield up to two orders of magnitude speedups on answering queries and responding to dynamic changes over the sum-product algorithm.


Blind channel identification for speech dereverberation using l1-norm sparse learning

Neural Information Processing Systems

Speech dereverberation remains an open problem after more than three decades of research. The most challenging step in speech dereverberation is blind channel identification (BCI). Although many BCI approaches have been developed, their performance is still far from satisfactory for practical applications. The main difficulty in BCI lies in finding an appropriate acoustic model, which not only can effectively resolve solution degeneracies due to the lack of knowledge of the source, but also robustly models real acoustic environments. This paper proposes a sparse acoustic room impulse response (RIR) model for BCI, that is, an acoustic RIR can be modeled by a sparse FIR filter.


Measuring Neural Synchrony by Message Passing

Neural Information Processing Systems

A novel approach to measure the interdependence of two time series is proposed, referred to as "stochastic event synchrony" (SES); it quantifies the alignment of two point processes by means of the following parameters: time delay, variance of the timing jitter, fraction of "spurious" events, and average similarity of events. SES may be applied to generic one-dimensional and multidimensional point processes, however, the paper mainly focusses on point processes in time-frequency domain. The average event similarity is in that case described by two parameters: the average frequency offset between events in the time-frequency plane, and the variance of the frequency offset ("frequency jitter"); SES then consists of five parameters in total. Those parameters quantify the synchrony of oscillatory events, and hence, they provide an alternative to existing synchrony measures that quantify amplitude or phase synchrony. The pairwise alignment of point processes is cast as a statistical inference problem, which is solved by applying the maxproduct algorithm on a graphical model. The SES parameters are determined from the resulting pairwise alignment by maximum a posteriori (MAP) estimation. The proposed interdependence measure is applied to the problem of detecting anomalies in EEG synchrony of Mild Cognitive Impairment (MCI) patients; the results indicate that SES significantly improves the sensitivity of EEG in detecting MCI.


Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion

Neural Information Processing Systems

We consider apprenticeship learning--learning from expert demonstrations--in the setting of large, complex domains. Past work in apprenticeship learning requires that the expert demonstrate complete trajectories through the domain. However, in many problems even an expert has difficulty controlling the system, which makes this approach infeasible. For example, consider the task of teaching a quadruped robot to navigate over extreme terrain; demonstrating an optimal policy (i.e., an optimal set of foot locations over the entire terrain) is a highly nontrivial task, even for an expert. In this paper we propose a method for hierarchical apprenticeship learning, which allows the algorithm to accept isolated advice at different hierarchical levels of the control task. This type of advice is often feasible for experts to give, even if the expert is unable to demonstrate complete trajectories. This allows us to extend the apprenticeship learning paradigm to much larger, more challenging domains. In particular, in this paper we apply the hierarchical apprenticeship learning algorithm to the task of quadruped locomotion over extreme terrain, and achieve, to the best of our knowledge, results superior to any previously published work.


Learning to classify complex patterns using a VLSI network of spiking neurons

Neural Information Processing Systems

We propose a compact, low power VLSI network of spiking neurons which can learn to classify complex patterns of mean firing rates online and in real-time. The network of integrate-and-fire neurons is connected by bistable synapses that can change their weight using a local spike-based plasticity mechanism. Learning is supervised by a teacher which provides an extra input to the output neurons during training. The synaptic weights are updated only if the current generated by the plastic synapses does not match the output desired by the teacher (as in the perceptron learning rule). We present experimental results that demonstrate how this VLSI network is able to robustly classify uncorrelated linearly separable spatial patterns of mean firing rates.


FilterBoost: Regression and Classification on Large Datasets

Neural Information Processing Systems

We study boosting in the filtering setting, where the booster draws examples from an oracle instead of using a fixed training set and so may train efficiently on very large datasets. Our algorithm, which is based on a logistic regression technique proposed by Collins, Schapire, & Singer, requires fewer assumptions to achieve bounds equivalent to or better than previous work. Moreover, we give the first proof that the algorithm of Collins et al. is a strong PAC learner, albeit within the filtering setting. Our proofs demonstrate the algorithm's strong theoretical properties for both classification and conditional probability estimation, and we validate these results through extensive experiments. Empirically, our algorithm proves more robust to noise and overfitting than batch boosters in conditional probability estimation and proves competitive in classification.


New Outer Bounds on the Marginal Polytope

Neural Information Processing Systems

We give a new class of outer bounds on the marginal polytope, and propose a cutting-plane algorithm for efficiently optimizing over these constraints. When combined with a concave upper bound on the entropy, this gives a new variational inference algorithm for probabilistic inference in discrete Markov Random Fields (MRFs). Valid constraints on the marginal polytope are derived through a series of projections onto the cut polytope. As a result, we obtain tighter upper bounds on the log-partition function. We also show empirically that the approximations of the marginals are significantly more accurate when using the tighter outer bounds. Finally, we demonstrate the advantage of the new constraints for finding the MAP assignment in protein structure prediction.


Simulated Annealing: Rigorous finite-time guarantees for optimization on continuous domains

Neural Information Processing Systems

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.


Discriminative Log-Linear Grammars with Latent Variables

Neural Information Processing Systems

We demonstrate that log-linear grammars with latent variables can be practically trained using discriminative methods. Central to efficient discriminative training is a hierarchical pruning procedure which allows feature expectations to be efficiently approximated in a gradient-based procedure.