Country
Supervised Machine Learning with a Novel Pointwise Density Estimator
Oyang, Yen-Jen, Chen, Chien-Yu, Chang, Darby Tien-Hao, Wu, Chih-Peng
This article proposes a novel density estimation based algorithm for carrying out supervised machine learning. The proposed algorithm features O(n) time complexity for generating a classifier, where n is the number of sampling instances in the training dataset. This feature is highly desirable in contemporary applications that involve large and still growing databases. In comparison with the kernel density estimation based approaches, the mathe-matical fundamental behind the proposed algorithm is not based on the assump-tion that the number of training instances approaches infinite. As a result, a classifier generated with the proposed algorithm may deliver higher prediction accuracy than the kernel density estimation based classifier in some cases.
Discriminated Belief Propagation
Near optimal decoding of good error control codes is generally a difficult task. However, for a certain type of (sufficiently) good codes an efficient decoding algorithm with near optimal performance exists. These codes are defined via a combination of constituent codes with low complexity trellis representations. Their decoding algorithm is an instance of (loopy) belief propagation and is based on an iterative transfer of constituent beliefs. The beliefs are thereby given by the symbol probabilities computed in the constituent trellises. Even though weak constituent codes are employed close to optimal performance is obtained, i.e., the encoder/decoder pair (almost) achieves the information theoretic capacity. However, (loopy) belief propagation only performs well for a rather specific set of codes, which limits its applicability. In this paper a generalisation of iterative decoding is presented. It is proposed to transfer more values than just the constituent beliefs. This is achieved by the transfer of beliefs obtained by independently investigating parts of the code space. This leads to the concept of discriminators, which are used to improve the decoder resolution within certain areas and defines discriminated symbol beliefs. It is shown that these beliefs approximate the overall symbol probabilities. This leads to an iteration rule that (below channel capacity) typically only admits the solution of the overall decoding problem. Via a Gauss approximation a low complexity version of this algorithm is derived. Moreover, the approach may then be applied to a wide range of channel maps without significant complexity increase.
Computational Intelligence Characterization Method of Semiconductor Device
Liau, Eric, Schmitt-Landsiedel, Doris
Characterization of semiconductor devices is used to gather as much data about the device as possible to determine weaknesses in design or trends in the manufacturing process. In this paper, we propose a novel multiple trip point characterization concept to overcome the constraint of single trip point concept in device characterization phase. In addition, we use computational intelligence techniques (e.g. neural network, fuzzy and genetic algorithm) to further manipulate these sets of multiple trip point values and tests based on semiconductor test equipments, Our experimental results demonstrate an excellent design parameter variation analysis in device characterization phase, as well as detection of a set of worst case tests that can provoke the worst case variation, while traditional approach was not capable of detecting them.
Analyzing covert social network foundation behind terrorism disaster
Maeno, Yoshiharu, Ohsawa, Yukio
This paper addresses a method to analyze the covert social network foundation hidden behind the terrorism disaster. It is to solve a node discovery problem, which means to discover a node, which functions relevantly in a social network, but escaped from monitoring on the presence and mutual relationship of nodes. The method aims at integrating the expert investigator's prior understanding, insight on the terrorists' social network nature derived from the complex graph theory, and computational data processing. The social network responsible for the 9/11 attack in 2001 is used to execute simulation experiment to evaluate the performance of the method.
Simultaneous adaptation to the margin and to complexity in classification
We consider the problem of adaptation to the margin and to complexity in binary classification. We suggest an exponential weighting aggregation scheme. We use this aggregation procedure to construct classifiers which adapt automatically to margin and complexity. Two main examples are worked out in which adaptivity is achieved in frameworks proposed by Steinwart and Scovel [Learning Theory. Lecture Notes in Comput. Sci. 3559 (2005) 279--294. Springer, Berlin; Ann. Statist. 35 (2007) 575--607] and Tsybakov [Ann. Statist. 32 (2004) 135--166]. Adaptive schemes, like ERM or penalized ERM, usually involve a minimization step. This is not the case for our procedure.
Effective linkage learning using low-order statistics and clustering
Emmendorfer, Leonardo, Pozo, Aurora
The adoption of probabilistic models for the best individuals found so far is a powerful approach for evolutionary computation. Increasingly more complex models have been used by estimation of distribution algorithms (EDAs), which often result better effectiveness on finding the global optima for hard optimization problems. Supervised and unsupervised learning of Bayesian networks are very effective options, since those models are able to capture interactions of high order among the variables of a problem. Diversity preservation, through niching techniques, has also shown to be very important to allow the identification of the problem structure as much as for keeping several global optima. Recently, clustering was evaluated as an effective niching technique for EDAs, but the performance of simpler low-order EDAs was not shown to be much improved by clustering, except for some simple multimodal problems. This work proposes and evaluates a combination operator guided by a measure from information theory which allows a clustered low-order EDA to effectively solve a comprehensive range of benchmark optimization problems.
Fuzzy Modeling of Electrical Impedance Tomography Image of the Lungs
Tanaka, Harki, Ortega, Neli Regina Siqueira, Galizia, Mauricio Stanzione, Sobrinho, Joao Batista Borges, Amato, Marcelo Britto Passos
Electrical Impedance Tomography (EIT) is a functional imaging method that is being developed for bedside use in critical care medicine. Aiming at improving the chest anatomical resolution of EIT images we developed a fuzzy model based on EIT high temporal resolution and the functional information contained in the pulmonary perfusion and ventilation signals. EIT data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was used as a reference . The fuzzy model was elaborated in three parts: a modeling of the heart, a pulmonary map from ventilation images and, a pulmonary map from perfusion images. Image segmentation was performed using a threshold method and a ventilation/perfusion map was generated. EIT images treated by the fuzzy model were compared with the hypertonic saline injection method and CT-scan images, presenting good results in both qualitative (the image obtained by the model was very similar to that of the CT-scan) and quantitative (the ROC curve provided an area equal to 0.93) point of view. Undoubtedly, these results represent an important step in the EIT images area, since they open the possibility of developing EIT-based bedside clinical methods, which are not available nowadays. These achievements could serve as the base to develop EIT diagnosis system for some life-threatening diseases commonly found in critical care medicine.
Supervised Machine Learning with a Novel Kernel Density Estimator
Oyang, Yen-Jen, Chang, Darby Tien-Hao, Ou, Yu-Yen, Hung, Hao-Geng, Wu, Chih-Peng, Chen, Chien-Yu
In recent years, kernel density estimation has been exploited by computer scientists to model machine learning problems. The kernel density estimation based approaches are of interest due to the low time complexity of either O(n) or O(n*log(n)) for constructing a classifier, where n is the number of sampling instances. Concerning design of kernel density estimators, one essential issue is how fast the pointwise mean square error (MSE) and/or the integrated mean square error (IMSE) diminish as the number of sampling instances increases. In this article, it is shown that with the proposed kernel function it is feasible to make the pointwise MSE of the density estimator converge at O(n^-2/3) regardless of the dimension of the vector space, provided that the probability density function at the point of interest meets certain conditions.
Using RDF to Model the Structure and Process of Systems
Rodriguez, Marko A., Watkins, Jennifer H., Bollen, Johan, Gershenson, Carlos
Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of $10^9$ edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.
The structure of verbal sequences analyzed with unsupervised learning techniques
Recanati, Catherine, Rogovschi, Nicoleta, Bennani, Younès
Data mining allows the exploration of sequences of phenomena, whereas one usually tends to focus on isolated phenomena or on the relation between two phenomena. It offers invaluable tools for theoretical analyses and exploration of the structure of sentences, texts, dialogues, and speech. We report here the results of an attempt at using it for inspecting sequences of verbs from French accounts of road accidents. This analysis comes from an original approach of unsupervised training allowing the discovery of the structure of sequential data. The entries of the analyzer were only made of the verbs appearing in the sentences. It provided a classification of the links between two successive verbs into four distinct clusters, allowing thus text segmentation. We give here an interpretation of these clusters by applying a statistical analysis to independent semantic annotations.