Goto

Collaborating Authors

 Country


Maximum Covariance Unfolding : Manifold Learning for Bimodal Data

Neural Information Processing Systems

We propose maximum covariance unfolding (MCU), a manifold learning algorithm for simultaneous dimensionality reduction of data from different input modalities. Given high dimensional inputs from two different but naturally aligned sources, MCU computes a common low dimensional embedding that maximizes the cross-modal (inter-source) correlations while preserving the local (intra-source) distances. In this paper, we explore two applications of MCU. First we use MCU to analyze EEG-fMRI data, where an important goal is to visualize the fMRI voxels that are most strongly correlated with changes in EEG traces. To perform this visualization, we augment MCU with an additional step for metric learning in the high dimensional voxel space. Second, we use MCU to perform cross-modal retrieval of matched image and text samples from Wikipedia. To manage large applications of MCU, we develop a fast implementation based on ideas from spectral graph theory. These ideas transform the original problem for MCU, one of semidefinite programming, into a simpler problem in semidefinite quadratic linear programming.


High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity

Neural Information Processing Systems

Although the standard formulations of prediction problems involve fully-observed and noiseless data drawn in an i.i.d. manner, many applications involve noisy and/or missing data, possibly involving dependencies. We study these issues in the context of high-dimensional sparse linear regression, and propose novel estimators for the cases of noisy, missing, and/or dependent data. Many standard approaches to noisy or missing data, such as those using the EM algorithm, lead to optimization problems that are inherently non-convex, and it is difficult to establish theoretical guarantees on practical algorithms. While our approach also involves optimizing non-convex programs, we are able to both analyze the statistical error associated with any global optimum, and prove that a simple projected gradient descent algorithm will converge in polynomial time to a small neighborhood of the set of global minimizers. On the statistical side, we provide non-asymptotic bounds that hold with high probability for the cases of noisy, missing, and/or dependent data. On the computational side, we prove that under the same types of conditions required for statistical consistency, the projected gradient descent algorithm will converge at geometric rates to a near-global minimizer. We illustrate these theoretical predictions with simulations, showing agreement with the predicted scalings.


Greedy Algorithms for Structurally Constrained High Dimensional Problems

Neural Information Processing Systems

A hallmark of modern machine learning is its ability to deal with high dimensional problems by exploiting structural assumptions that limit the degrees of freedom in the underlying model. A deep understanding of the capabilities and limits of high dimensional learning methods under specific assumptions such as sparsity, group sparsity, and low rank has been attained. Efforts (Negahban et al., 2010, Chandrasekaran et al., 2010} are now underway to distill this valuable experience by proposing general unified frameworks that can achieve the twin goals of summarizing previous analyses and enabling their application to notions of structure hitherto unexplored. Inspired by these developments, we propose and analyze a general computational scheme based on a greedy strategy to solve convex optimization problems that arise when dealing with structurally constrained high-dimensional problems. Our framework not only unifies existing greedy algorithms by recovering them as special cases but also yields novel ones. Finally, we extend our results to infinite dimensional problems by using interesting connections between smoothness of norms and behavior of martingales in Banach spaces.


Boosting with Maximum Adaptive Sampling

Neural Information Processing Systems

Classical Boosting algorithms, such as AdaBoost, build a strong classifier without concern about the computational cost. Some applications, in particular in computer vision, may involve up to millions of training examples and features. In such contexts, the training time may become prohibitive. Several methods exist to accelerate training, typically either by sampling the features, or the examples, used to train the weak learners. Even if those methods can precisely quantify the speed improvement they deliver, they offer no guarantee of being more efficient than any other, given the same amount of time. This paper aims at shading some light on this problem, i.e. given a fixed amount of time, for a particular problem, which strategy is optimal in order to reduce the training loss the most. We apply this analysis to the design of new algorithms which estimate on the fly at every iteration the optimal trade-off between the number of samples and the number of features to look at in order to maximize the expected loss reduction. Experiments in object recognition with two standard computer vision data-sets show that the adaptive methods we propose outperform basic sampling and state-of-the-art bandit methods.


Budgeted Optimization with Concurrent Stochastic-Duration Experiments

Neural Information Processing Systems

Budgeted optimization involves optimizing an unknown function that is costly to evaluate by requesting a limited number of function evaluations at intelligently selected inputs. Typical problem formulations assume that experiments are selected one at a time with a limited total number of experiments, which fail to capture important aspects of many real-world problems. This paper defines a novel problem formulation with the following important extensions: 1) allowing for concurrent experiments; 2) allowing for stochastic experiment durations; and 3) placing constraints on both the total number of experiments and the total experimental time. We develop both offline and online algorithms for selecting concurrent experiments in this new setting and provide experimental results on a number of optimization benchmarks. The results show that our algorithms produce highly effective schedules compared to natural baselines.


Modelling Genetic Variations using Fragmentation-Coagulation Processes

Neural Information Processing Systems

We propose a novel class of Bayesian nonparametric models for sequential data called fragmentation-coagulation processes (FCPs). FCPs model a set of sequences using a partition-valued Markov process which evolves by splitting and merging clusters. An FCP is exchangeable, projective, stationary and reversible, and its equilibrium distributions are given by the Chinese restaurant process. As opposed to hidden Markov models, FCPs allow for flexible modelling of the number of clusters, and they avoid label switching non-identifiability problems. We develop an efficient Gibbs sampler for FCPs which uses uniformization and the forward-backward algorithm. Our development of FCPs is motivated by applications in population genetics, and we demonstrate the utility of FCPs on problems of genotype imputation with phased and unphased SNP data.


Automated Refinement of Bayes Networks' Parameters based on Test Ordering Constraints

Neural Information Processing Systems

In this paper, we derive a method to refine a Bayes network diagnostic model by exploiting constraints implied by expert decisions on test ordering. At each step, the expert executes an evidence gathering test, which suggests the test's relative diagnostic value. We demonstrate that consistency with an expert's test selection leads to non-convex constraints on the model parameters. We incorporate these constraints by augmenting the network with nodes that represent the constraint likelihoods. Gibbs sampling, stochastic hill climbing and greedy search algorithms are proposed to find a MAP estimate that takes into account test ordering constraints and any data available. We demonstrate our approach on diagnostic sessions from a manufacturing scenario.


Why The Brain Separates Face Recognition From Object Recognition

Neural Information Processing Systems

Many studies have uncovered evidence that visual cortex contains specialized regions involved in processing faces but not other object classes. Recent electrophysiology studies of cells in several of these specialized regions revealed that at least some of these regions are organized in a hierarchical manner with viewpoint-specific cells projecting to downstream viewpoint-invariant identity-specific cells (Freiwald and Tsao 2010). A separate computational line of reasoning leads to the claim that some transformations of visual inputs that preserve viewed object identity are class-specific. In particular, the 2D images evoked by a face undergoing a 3D rotation are not produced by the same image transformation (2D) that would produce the images evoked by an object of another class undergoing the same 3D rotation. However, within the class of faces, knowledge of the image transformation evoked by 3D rotation can be reliably transferred from previously viewed faces to help identify a novel face at a new viewpoint. We show, through computational simulations, that an architecture which applies this method of gaining invariance to class-specific transformations is effective when restricted to faces and fails spectacularly when applied across object classes. We argue here that in order to accomplish viewpoint-invariant face identification from a single example view, visual cortex must separate the circuitry involved in discounting 3D rotations of faces from the generic circuitry involved in processing other objects. The resulting model of the ventral stream of visual cortex is consistent with the recent physiology results showing the hierarchical organization of the face processing network.


Active Classification based on Value of Classifier

Neural Information Processing Systems

Modern classification tasks usually involve many class labels and can be informed by a broad range of features. Many of these tasks are tackled by constructing a set of classifiers, which are then applied at test time and then pieced together in a fixed procedure determined in advance or at training time. We present an active classification process at the test time, where each classifier in a large ensemble is viewed as a potential observation that might inform our classification process. Observations are then selected dynamically based on previous observations, using a value-theoretic computation that balances an estimate of the expected classification gain from each observation as well as its computational cost. The expected classification gain is computed using a probabilistic model that uses the outcome from previous observations. This active classification process is applied at test time for each individual test instance, resulting in an efficient instance-specific decision path. We demonstrate the benefit of the active scheme on various real-world datasets, and show that it can achieve comparable or even higher classification accuracy at a fraction of the computational costs of traditional methods.


Clustering via Dirichlet Process Mixture Models for Portable Skill Discovery

Neural Information Processing Systems

Skill discovery algorithms in reinforcement learning typically identify single states or regions in state space that correspond to task-specific subgoals. However, such methods do not directly address the question of how many distinct skills are appropriate for solving the tasks that the agent faces. This can be highly inefficient when many identified subgoals correspond to the same underlying skill, but are all used individually as skill goals. Furthermore, skills created in this manner are often only transferable to tasks that share identical state spaces, since corresponding subgoals across tasks are not merged into a single skill goal. We show that these problems can be overcome by clustering subgoal data defined in an agent-space and using the resulting clusters as templates for skill termination conditions. Clustering via a Dirichlet process mixture model is used to discover a minimal, sufficient collection of portable skills.