Country
Tiled convolutional neural networks
Ngiam, Jiquan, Chen, Zhenghao, Chia, Daniel, Koh, Pang W., Le, Quoc V., Ng, Andrew Y.
Convolutional neural networks (CNNs) have been successfully applied to many tasks such as digit and object recognition. Using convolutional (tied) weights significantly reduces the number of parameters that have to be learned, and also allows translational invariance to be hard-coded into the architecture. In this paper, we consider the problem of learning invariances, rather than relying on hard-coding. We propose tiled convolution neural networks (Tiled CNNs), which use a regular “tiled” pattern of tied weights that does not require that adjacent hidden units share identical weights, but instead requires only that hidden units k steps away from each other to have tied weights. By pooling over neighboring units, this architecture is able to learn complex invariances (such as scale and rotational invariance) beyond translational invariance. Further, it also enjoys much of CNNs’ advantage of having a relatively small number of learned parameters (such as ease of learning and greater scalability). We provide an efficient learning algorithm for Tiled CNNs based on Topographic ICA, and show that learning complex invariant features allows us to achieve highly competitive results for both the NORB and CIFAR-10 datasets.
Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition
Bucak, Serhat, Jin, Rong, Jain, Anil K.
Recent studies have shown that multiple kernel learning is very effective for object recognition, leading to the popularity of kernel learning in computer vision problems. In this work, we develop an efficient algorithm for multi-label multiple kernel learning (ML-MKL). We assume that all the classes under consideration share the same combination of kernel functions, and the objective is to find the optimal kernel combination that benefits all the classes. Although several algorithms have been developed for ML-MKL, their computational cost is linear in the number of classes, making them unscalable when the number of classes is large, a challenge frequently encountered in visual object recognition. We address this computational challenge by developing a framework for ML-MKL that combines the worst-case analysis with stochastic approximation. Our analysis shows that the complexity of our algorithm is $O(m^{1/3}\sqrt{ln m})$, where $m$ is the number of classes. Empirical studies with object recognition show that while achieving similar classification accuracy, the proposed method is significantly more efficient than the state-of-the-art algorithms for ML-MKL.
Learning Networks of Stochastic Differential Equations
Pereira, José, Ibrahimi, Morteza, Montanari, Andrea
We consider linear models for stochastic dynamics. Any such model can be associated a network (namely a directed graph) describing which degrees of freedom interact under the dynamics. We tackle the problem of learning such a network from observation of the system trajectory over a time interval T. We analyse the l1-regularized least squares algorithm and, in the setting in which the underlying network is sparse, we prove performance guarantees that are uniform in the sampling rate as long as this is sufficiently high. This result substantiates the notion of a well defined ‘time complexity’ for the network inference problem.
Probabilistic latent variable models for distinguishing between cause and effect
Stegle, Oliver, Janzing, Dominik, Zhang, Kun, Mooij, Joris M., Schölkopf, Bernhard
We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y . The basic idea is to model the observed data using probabilistic latent variable models, which incorporate the effects of unobserved noise. To this end, we consider the hypothetical effect variable to be a function of the hypothetical cause variable and an independent noise term (not necessarily additive). An important novel aspect of our work is that we do not restrict the model class, but instead put general nonparametric priors on this function and on the distribution of the cause. The causal direction can then be inferred by using standard Bayesian model selection. We evaluate our approach on synthetic data and real-world data and report encouraging results.
Minimum Average Cost Clustering
Nagano, Kiyohito, Kawahara, Yoshinobu, Iwata, Satoru
A number of objective functions in clustering problems can be described with submodular functions. In this paper, we introduce the minimum average cost criterion, and show that the theory of intersecting submodular functions can be used for clustering with submodular objective functions. The proposed algorithm does not require the number of clusters in advance, and it will be determined by the property of a given set of data points. The minimum average cost clustering problem is parameterized with a real variable, and surprisingly, we show that all information about optimal clusterings for all parameters can be computed in polynomial time in total. Additionally, we evaluate the performance of the proposed algorithm through computational experiments.
Multiple Kernel Learning and the SMO Algorithm
Sun, Zhaonan, Ampornpunt, Nawanol, Varma, Manik, Vishwanathan, S.v.n.
Our objective is to train $p$-norm Multiple Kernel Learning (MKL) and, more generally, linear MKL regularised by the Bregman divergence, using the Sequential Minimal Optimization (SMO) algorithm. The SMO algorithm is simple, easy to implement and adapt, and efficiently scales to large problems. As a result, it has gained widespread acceptance and SVMs are routinely trained using SMO in diverse real world applications. Training using SMO has been a long standing goal in MKL for the very same reasons. Unfortunately, the standard MKL dual is not differentiable, and therefore can not be optimised using SMO style co-ordinate ascent. In this paper, we demonstrate that linear MKL regularised with the $p$-norm squared, or with certain Bregman divergences, can indeed be trained using SMO. The resulting algorithm retains both simplicity and efficiency and is significantly faster than the state-of-the-art specialised $p$-norm MKL solvers. We show that we can train on a hundred thousand kernels in approximately seven minutes and on fifty thousand points in less than half an hour on a single core.
Segmentation as Maximum-Weight Independent Set
Brendel, William, Todorovic, Sinisa
Given an ensemble of distinct, low-level segmentations of an image, our goal is to identify visually meaningful" segments in the ensemble. Knowledge about any specific objects and surfaces present in the image is not available. The selection of image regions occupied by objects is formalized as the maximum-weight independent set (MWIS) problem. MWIS is the heaviest subset of mutually non-adjacent nodes of an attributed graph. We construct such a graph from all segments in the ensemble. Then, MWIS selects maximally distinctive segments that together partition the image. A new MWIS algorithm is presented. The algorithm seeks a solution directly in the discrete domain, instead of relaxing MWIS to a continuous problem, as common in previous work. It iteratively finds a candidate discrete solution of the Taylor series expansion of the original MWIS objective function around the previous solution. The algorithm is shown to converge to a maximum. Our empirical evaluation on the benchmark Berkeley segmentation dataset shows that the new algorithm eliminates the need for hand-picking optimal input parameters of the state-of-the-art segmenters, and outperforms their best, manually optimized results."
A Bayesian Approach to Concept Drift
To cope with concept drift, we placed a probability distribution over the location of the most-recent drift point. We used Bayesian model comparison to update this distribution from the predictions of models trained on blocks of consecutive observations and pruned potential drift points with low probability. We compare our approach to a non-probabilistic method for drift and a probabilistic method for change-point detection. In our experiments, our approach generally yielded improved accuracy and/or speed over these other methods.
Learning Convolutional Feature Hierarchies for Visual Recognition
Kavukcuoglu, Koray, Sermanet, Pierre, Boureau, Y-lan, Gregor, Karol, Mathieu, Michael, Cun, Yann L.
We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features. While sparse coding has become an increasingly popular method for learning visual features, it is most often trained at the patch level. Applying the resulting filters convolutionally results in highly redundant codes because overlapping patches are encoded in isolation. By training convolutionally over large image windows, our method reduces the redudancy between feature vectors at neighboring locations and improves the efficiency of the overall representation. In addition to a linear decoder that reconstructs the image from sparse features, our method trains an efficient feed-forward encoder that predicts quasi-sparse features from the input. While patch-based training rarely produces anything but oriented edge detectors, we show that convolutional training produces highly diverse filters, including center-surround filters, corner detectors, cross detectors, and oriented grating detectors. We show that using these filters in multi-stage convolutional network architecture improves performance on a number of visual recognition and detection tasks.
Why are some word orders more common than others? A uniform information density account
Maurits, Luke, Navarro, Dan, Perfors, Amy
Languages vary widely in many ways, including their canonical word order. A basic aspect of the observed variation is the fact that some word orders are much more common than others. Although this regularity has been recognized for some time, it has not been well-explained. In this paper we offer an information-theoretic explanation for the observed word-order distribution across languages, based on the concept of Uniform Information Density (UID). We suggest that object-first languages are particularly disfavored because they are highly non-optimal if the goal is to distribute information content approximately evenly throughout a sentence, and that the rest of the observed word-order distribution is at least partially explainable in terms of UID. We support our theoretical analysis with data from child-directed speech and experimental work.