Country
Complexity distribution of agent policies
We analyse the complexity of environments according to the policies that need to be used to achieve high performance. The performance results for a population of policies leads to a distribution that is examined in terms of policy complexity and analysed through several diagrams and indicators. The notion of environment response curve is also introduced, by inverting the performance results into an ability scale. We apply all these concepts, diagrams and indicators to a minimalistic environment class, agent-populated elementary cellular automata, showing how the difficulty, discriminating power and ranges (previous to normalisation) may vary for several environments.
Feature Selection for Microarray Gene Expression Data using Simulated Annealing guided by the Multivariate Joint Entropy
Gonzรกlez, Fernando, Belanche, Lluรญs A.
In this work a new way to calculate the multivariate joint entropy is presented. This measure is the basis for a fast information-theoretic based evaluation of gene relevance in a Microarray Gene Expression data context. Its low complexity is based on the reuse of previous computations to calculate current feature relevance. The mu-TAFS algorithm --named as such to differentiate it from previous TAFS algorithms-- implements a simulated annealing technique specially designed for feature subset selection. The algorithm is applied to the maximization of gene subset relevance in several public-domain microarray data sets. The experimental results show a notoriously high classification performance and low size subsets formed by biologically meaningful genes.
Possible and Necessary Winner Problem in Social Polls
Gaspers, Serge, Naroditskiy, Victor, Narodytska, Nina, Walsh, Toby
Social networks are increasingly being used to conduct polls. We introduce a simple model of such social polling. We suppose agents vote sequentially, but the order in which agents choose to vote is not necessarily fixed. We also suppose that an agent's vote is influenced by the votes of their friends who have already voted. Despite its simplicity, this model provides useful insights into a number of areas including social polling, sequential voting, and manipulation. We prove that the number of candidates and the network structure affect the computational complexity of computing which candidate necessarily or possibly can win in such a social poll. For social networks with bounded treewidth and a bounded number of candidates, we provide polynomial algorithms for both problems. In other cases, we prove that computing which candidates necessarily or possibly win are computationally intractable.
Constraint Propagation as Information Maximization
Abdallah, A. Nait, van Emden, M. H.
This paper draws on diverse areas of computer science to develop a unified view of computation: (1) Optimization in operations research, where a numerical objective function is maximized under constraints, is generalized from the numerical total order to a non-numerical partial order that can be interpreted in terms of information. (2) Relations are generalized so that there are relations of which the constituent tuples have numerical indexes, whereas in other relations these indexes are variables. The distinction is essential in our definition of constraint satisfaction problems. (3) Constraint satisfaction problems are formulated in terms of semantics of conjunctions of atomic formulas of predicate logic. (4) Approximation structures, which are available for several important domains, are applied to solutions of constraint satisfaction problems. As application we treat constraint satisfaction problems over reals. These cover a large part of numerical analysis, most significantly nonlinear equations and inequalities. The chaotic algorithm analyzed in the paper combines the efficiency of floating-point computation with the correctness guarantees of arising from our logico-mathematical model of constraint-satisfaction problems.
Fast Image Scanning with Deep Max-Pooling Convolutional Neural Networks
Giusti, Alessandro, Cireลan, Dan C., Masci, Jonathan, Gambardella, Luca M., Schmidhuber, Jรผrgen
Deep Neural Networks now excel at image classification, detection and segmentation. When used to scan images by means of a sliding window, however, their high computational complexity can bring even the most powerful hardware to its knees. We show how dynamic programming can speedup the process by orders of magnitude, even when max-pooling layers are present.
Embedding agents in business applications using enterprise integration patterns
Cranefield, Stephen, Ranathunga, Surangika
This paper addresses the issue of integrating agents with a variety of external resources and services, as found in enterprise computing environments. We propose an approach for interfacing agents and existing message routing and mediation engines based on the endpoint concept from the enterprise integration patterns of Hohpe and Woolf. A design for agent endpoints is presented, and an architecture for connecting the Jason agent platform to the Apache Camel enterprise integration framework using this type of endpoint is described. The approach is illustrated by means of a business process use case, and a number of Camel routes are presented. These demonstrate the benefits of interfacing agents to external services via a specialised message routing tool that supports enterprise integration patterns.
Problem-Focused Incremental Elicitation of Multi-Attribute Utility Models
Decision theory has become widely accepted in the AI community as a useful framework for planning and decision making. Applying the framework typically requires elicitation of some form of probability and utility information. While much work in AI has focused on providing representations and tools for elicitation of probabilities, relatively little work has addressed the elicitation of utility models. This imbalance is not particularly justified considering that probability models are relatively stable across problem instances, while utility models may be different for each instance. Spending large amounts of time on elicitation can be undesirable for interactive systems used in low-stakes decision making and in time-critical decision making. In this paper we investigate the issues of reasoning with incomplete utility models. We identify patterns of problem instances where plans can be proved to be suboptimal if the (unknown) utility function satisfies certain conditions. We present an approach to planning and decision making that performs the utility elicitation incrementally and in a way that is informed by the domain model.
Update Rules for Parameter Estimation in Bayesian Networks
Bauer, Eric, Koller, Daphne, Singer, Yoram
This paper re-examines the problem of parameter estimation in Bayesian networks with missing values and hidden variables from the perspective of recent work in on-line learning [Kivinen & Warmuth, 1994]. We provide a unified framework for parameter estimation that encompasses both on-line learning, where the model is continuously adapted to new data cases as they arrive, and the more traditional batch learning, where a pre-accumulated set of samples is used in a one-time model selection process. In the batch case, our framework encompasses both the gradient projection algorithm and the EM algorithm for Bayesian networks. The framework also leads to new on-line and batch parameter update schemes, including a parameterized version of EM. We provide both empirical and theoretical results indicating that parameterized EM allows faster convergence to the maximum likelihood parameters than does standard EM.
Models and Selection Criteria for Regression and Classification
Heckerman, David, Meek, Christopher
When performing regression or classification, we are interested in the conditional probability distribution for an outcome or class variable Y given a set of explanatoryor input variables X. We consider Bayesian models for this task. In particular, we examine a special class of models, which we call Bayesian regression/classification (BRC) models, that can be factored into independent conditional (y|x) and input (x) models. These models are convenient, because the conditional model (the portion of the full model that we care about) can be analyzed by itself. We examine the practice of transforming arbitrary Bayesian models to BRC models, and argue that this practice is often inappropriate because it ignores prior knowledge that may be important for learning. In addition, we examine Bayesian methods for learning models from data. We discuss two criteria for Bayesian model selection that are appropriate for repression/classification: one described by Spiegelhalter et al. (1993), and another by Buntine (1993). We contrast these two criteria using the prequential framework of Dawid (1984), and give sufficient conditions under which the criteria agree.
An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering
Kearns, Michael, Mansour, Yishay, Ng, Andrew Y.
Assignment methods are at the heart of many algorithms for unsupervised learning and clustering - in particular, the well-known K-means and Expectation-Maximization (EM) algorithms. In this work, we study several different methods of assignment, including the "hard" assignments used by K-means and the ?soft' assignments used by EM. While it is known that K-means minimizes the distortion on the data and EM maximizes the likelihood, little is known about the systematic differences of behavior between the two algorithms. Here we shed light on these differences via an information-theoretic analysis. The cornerstone of our results is a simple decomposition of the expected distortion, showing that K-means (and its extension for inferring general parametric densities from unlabeled sample data) must implicitly manage a trade-off between how similar the data assigned to each cluster are, and how the data are balanced among the clusters. How well the data are balanced is measured by the entropy of the partition defined by the hard assignments. In addition to letting us predict and verify systematic differences between K-means and EM on specific examples, the decomposition allows us to give a rather general argument showing that K ?means will consistently find densities with less "overlap" than EM. We also study a third natural assignment method that we call posterior assignment, that is close in spirit to the soft assignments of EM, but leads to a surprisingly different algorithm.