Goto

Collaborating Authors

 Country


Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint

arXiv.org Artificial Intelligence

Cumulative resource constraints can model scarce resources in scheduling problems or a dimension in packing and cutting problems. In order to efficiently solve such problems with a constraint programming solver, it is important to have strong and fast propagators for cumulative resource constraints. One such propagator is the recently developed time-table-edge-finding propagator, which considers the current resource profile during the edge-finding propagation. Recently, lazy clause generation solvers, i.e. constraint programming solvers incorporating nogood learning, have proved to be excellent at solving scheduling and cutting problems. For such solvers, concise and accurate explanations of the reasons for propagation are essential for strong nogood learning. In this paper, we develop the first explaining version of time-table-edge-finding propagation and show preliminary results on resource-constrained project scheduling problems from various standard benchmark suites. On the standard benchmark suite PSPLib, we were able to close one open instance and to improve the lower bound of about 60% of the remaining open instances. Moreover, 6 of those instances were closed.


Bandits with heavy tail

arXiv.org Machine Learning

The stochastic multi-armed bandit problem is well understood when the reward distributions are sub-Gaussian. In this paper we examine the bandit problem under the weaker assumption that the distributions have moments of order 1+\epsilon, for some $\epsilon \in (0,1]$. Surprisingly, moments of order 2 (i.e., finite variance) are sufficient to obtain regret bounds of the same order as under sub-Gaussian reward distributions. In order to achieve such regret, we define sampling strategies based on refined estimators of the mean such as the truncated empirical mean, Catoni's M-estimator, and the median-of-means estimator. We also derive matching lower bounds that also show that the best achievable regret deteriorates when \epsilon <1.


Bayesian Nonparametric Hidden Semi-Markov Models

arXiv.org Machine Learning

There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi-Markovianity, which has been developed mainly in the parametric frequentist setting, to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicit-duration Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) and develop sampling algorithms for efficient posterior inference. The methods we introduce also provide new methods for sampling inference in the finite Bayesian HSMM. Our modular Gibbs sampling methods can be embedded in samplers for larger hierarchical Bayesian models, adding semi-Markov chain modeling as another tool in the Bayesian inference toolbox. We demonstrate the utility of the HDP-HSMM and our inference methods on both synthetic and real experiments.


On spatial selectivity and prediction across conditions with fMRI

arXiv.org Machine Learning

Researchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks.


Estimating Densities with Non-Parametric Exponential Families

arXiv.org Machine Learning

We propose a novel approach for density estimation with exponential families for the case when the true density may not fall within the chosen family. Our approach augments the sufficient statistics with features designed to accumulate probability mass in the neighborhood of the observed points, resulting in a non-parametric model similar to kernel density estimators. We show that under mild conditions, the resulting model uses only the sufficient statistics if the density is within the chosen exponential family, and asymptotically, it approximates densities outside of the chosen exponential family. Using the proposed approach, we modify the exponential random graph model, commonly used for modeling small-size graph distributions, to address the well-known issue of model degeneracy.


Distance Optimal Formation Control on Graphs with a Tight Convergence Time Guarantee

arXiv.org Artificial Intelligence

For the task of moving a set of indistinguishable agents on a connected graph with unit edge distance to an arbitrary set of goal vertices, free of collisions, we propose a fast distance optimal control algorithm that guides the agents into the desired formation. Moreover, we show that the algorithm also provides a tight convergence time guarantee (time optimality and distance optimality cannot be simultaneously satisfied). Our generic graph formulation allows the algorithm to be applied to scenarios such as grids with holes (modeling obstacles) in arbitrary dimensions. Simulations, available online, confirm our theoretical developments.


Optimal measures and Markov transition kernels

arXiv.org Machine Learning

We study optimal solutions to an abstract optimization problem for measures, which is a generalization of classical variational problems in information theory and statistical physics. In the classical problems, information and relative entropy are defined using the Kullback-Leibler divergence, and for this reason optimal measures belong to a one-parameter exponential family. Measures within such a family have the property of mutual absolute continuity. Here we show that this property characterizes other families of optimal positive measures if a functional representing information has a strictly convex dual. Mutual absolute continuity of optimal probability measures allows us to strictly separate deterministic and non-deterministic Markov transition kernels, which play an important role in theories of decisions, estimation, control, communication and computation. We show that deterministic transitions are strictly sub-optimal, unless information resource with a strictly convex dual is unconstrained. For illustration, we construct an example where, unlike non-deterministic, any deterministic kernel either has negatively infinite expected utility (unbounded expected error) or communicates infinite information.


Restricting exchangeable nonparametric distributions

arXiv.org Machine Learning

Distributions over exchangeable matrices with infinitely many columns, such as the Indian buffet process, are useful in constructing nonparametric latent variable models. However, the distribution implied by such models over the number of features exhibited by each data point may be poorly- suited for many modeling tasks. In this paper, we propose a class of exchangeable nonparametric priors obtained by restricting the domain of existing models. Such models allow us to specify the distribution over the number of features per data point, and can achieve better performance on data sets where the number of features is not well-modeled by the original distribution.


Sparse Reward Processes

arXiv.org Machine Learning

We introduce a class of learning problems where the agent is presented with a series of tasks. Intuitively, if there is relation among those tasks, then the information gained during execution of one task has value for the execution of another task. Consequently, the agent is intrinsically motivated to explore its environment beyond the degree necessary to solve the current task it has at hand. We develop a decision theoretic setting that generalises standard reinforcement learning tasks and captures this intuition. More precisely, we consider a multi-stage stochastic game between a learning agent and an opponent. We posit that the setting is a good model for the problem of life-long learning in uncertain environments, where while resources must be spent learning about currently important tasks, there is also the need to allocate effort towards learning about aspects of the world which are not relevant at the moment. This is due to the fact that unpredictable future events may lead to a change of priorities for the decision maker. Thus, in some sense, the model "explains" the necessity of curiosity. Apart from introducing the general formalism, the paper provides algorithms. These are evaluated experimentally in some exemplary domains. In addition, performance bounds are proven for some cases of this problem.


A Method of Moments for Mixture Models and Hidden Markov Models

arXiv.org Machine Learning

Mixture models are a fundamental tool in applied statistics and machine learning for treating data taken from multiple subpopulations. The current practice for estimating the parameters of such models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and existing consistent methods are unfavorable due to their high computational and sample complexity which typically scale exponentially with the number of mixture components. This work develops an efficient method of moments approach to parameter estimation for a broad class of high-dimensional mixture models with many components, including multi-view mixtures of Gaussians (such as mixtures of axis-aligned Gaussians) and hidden Markov models. The new method leads to rigorous unsupervised learning results for mixture models that were not achieved by previous works; and, because of its simplicity, it offers a viable alternative to EM for practical deployment.