Goto

Collaborating Authors

 Country


Reconstructing the Stochastic Evolution Diagram of Dynamic Complex Systems

AAAI Conferences

The behavior and dynamics of complex systems are in focus of many research fields. The complexity of such systems comes not only from the number of their elements, but also from the unavoidable emergence of new properties of the system, which are not just a simple summation of the properties of its elements. The behavior of complex systems can be fitted with a number of well developed models, which, however, do not incorporate the modularity and the evolution of a system simultaneously. In this work, we propose a generalized model that addresses this issue. Our model is developed within the Random Set Theory’s framework and allows for reconstructing the stochastic evolution diagrams of complex systems.


Generating Diverse Plans Using Quantitative and Qualitative Plan Distance Metrics

AAAI Conferences

Diversity-aware planning consists of generating multiple plans which, while solving the same problem, are dissimilar from one another. Quantitative plan diversity is domain-independent and does not require extensive knowledge-engineering effort, but can fail to reflect plan differences that are relevant to users. Qualitative plan diversity is based on domain-specific characteristics, thus being of greater practical value, but may require substantial knowledge engineering. We demonstrate a domain-independent diverse plan generation method that is based on customizable plan distance metrics and amenable to both quantitative and qualitative diversity. Qualitative plan diversity is obtained with minimal knowledge-engineering effort, using distance metrics which incorporate domain-specific content.


Recommendation Sets and Choice Queries: There Is No Exploration/Exploitation Tradeoff!

AAAI Conferences

Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query users about their preferences and offer recommendations based on the system's belief about the user's utility function. We analyze the connection between the problem of generating optimal recommendation sets and the problem of generating optimal choice queries, considering both Bayesian and regret-based elicitation. Our results show that, somewhat surprisingly, under very general circumstances, the optimal recommendation set coincides with the optimal query.


Generating Explanations for Complex Biomedical Queries

AAAI Conferences

We present a computational method to generate explanations to answers of complex queries over biomedical ontologies and databases, using the high-level representation and efficient automated reasoners of Answer Set Programming. We show the applicability of our approach with some queries related to drug discovery over PHARMGKB, DRUGBANK, BIOGRID, CTD and SIDER.


Towards Practical ABox Abduction in Large OWL DL Ontologies

AAAI Conferences

ABox abduction is an important aspect for abductive reasoning in Description Logics (DLs). It finds all minimal sets of ABox axioms that should be added to a background ontology to enforce entailment of a specified set of ABox axioms. As far as we know, by now there is only one ABox abduction method in expressive DLs computing abductive solutions with certain minimality. However, the method targets an ABox abduction problem that may have infinitely many abductive solutions and may not output an abductive solution in finite time. Hence, in this paper we propose a new ABox abduction problem which has only finitely many abductive solutions and also propose a novel method to solve it. The method reduces the original problem to an abduction problem in logic programming and solves it with Prolog engines. Experimental results show that the method is able to compute abductive solutions in benchmark OWL DL ontologies with large ABoxes.


Collaborative Users’ Brand Preference Mining across Multiple Domains from Implicit Feedbacks

AAAI Conferences

Advanced e-applications require comprehensive knowledge about their users’ preferences in order to provide accurate personalized services. In this paper, we propose to learn users’ preferences to product brands from their implicit feedbacks such as their searching and browsing behaviors in user Web browsing log data. The user brand preference learning problem is challenge since (1) the users’ implicit feedbacks are extremely sparse in various product domains; and (2) we can only observe positive feedbacks from users’ behaviors. In this paper, we propose a latent factor model to collaboratively mine users’ brand preferences across multiple domains simultaneously. By collective learning, the learning processes in all the domains are mutually enhanced and hence the problem of data scarcity in each single domain can be effectively addressed. On the other hand, we learn our model with an adaption of the Bayesian personalized ranking (BPR) optimization criterion which is a general learning framework for collaborative filtering from implicit feedbacks. Experiments with both synthetic and real world datasets show that our proposed model significantly outperforms the baselines.


Non-Parametric Approximate Linear Programming for MDPs

AAAI Conferences

The Approximate Linear Programming (ALP) approach to value function approximation for MDPs is a parametric value function approximation method, in that it represents the value function as a linear combination of features which are chosen a priori. Choosing these features can be a difficult challenge in itself. One recent effort, Regularized Approximate Linear Programming (RALP), uses L1 regularization to address this issue by combining a large initial set of features with a regularization penalty that favors a smooth value function with few non-zero weights. Rather than using smoothness as a backhanded way of addressing the feature selection problem, this paper starts with smoothness and develops a non-parametric approach to ALP that is consistent with the smoothness assumption. We show that this new approach has some favorable practical and analytical properties in comparison to (R)ALP.


Spectrum-Based Sequential Diagnosis

AAAI Conferences

We present a spectrum-based, sequential software debugging approach coined Sequoia, that greedily selects tests out of a suite of tests to narrow down the set of diagnostic candidates with a minimum number of tests. Sequoia handles multiple faults, that can be intermittent, at polynomial time and space complexity, due to a novel, approximate diagnostic entropy estimation approach, which considers the subset of diagnoses that cover almost all Bayesian posterior probability mass. Synthetic experiments show that Sequoia achieves much better diagnostic uncertainty reduction compared to random test sequencing.Real programs, taken from the Software Infrastructure Repository, confirm Sequoia's better performance, with a test reduction up to 80% compared to random test sequences.


Bayesian Learning of Generalized Board Positions for Improved Move Prediction in Computer Go

AAAI Conferences

Computer Go presents a challenging problem for machine learning agents. With the number of possible board states estimated to be larger than the number of hydrogen atoms in the universe, learning effective policies or board evaluation functions is extremely difficult. In this paper we describe Cortigo, a system that efficiently and autonomously learns useful generalizations for large state-space classification problems such as Go. Cortigo uses a hierarchical generative model loosely related to the human visual cortex to recognize Go board positions well enough to suggest promising next moves. We begin by briefly describing and providing motivation for research in the computer Go domain. We describe Cortigo’s ability to learn predictive models based on large subsets of the Go board and demonstrate how using Cortigo’s learned models as additive knowledge in a state-of-the-art computer Go player (Fuego) significantly improves its playing strength.


Multiple-Instance Learning: Multiple Feature Selection on Instance Representation

AAAI Conferences

In multiple-Instance Learning (MIL), training class labels are attached to sets of bags composed of unlabeled instances, and the goal is to deal with classification of bags. Most previous MIL algorithms, which tackle classification problems, consider each instance as a represented feature. Although the algorithms work well in some prediction problems, considering diverse features to represent an instance may provide more significant information for learning task. Moreover, since each instance may be mapped into diverse feature spaces, encountering a large number of irrelevant or redundant features is inevitable. In this paper, we propose a method to select relevant instances and concurrently consider multiple features for each instance, which is termed as MIL-MFS. MIL-MFS is based on multiple kernel learning (MKL), and it iteratively selects the fusing multiple features for classifier training. Experimental results show that the MIL-MFS combined with multiple kernel learning can significantly improve the classification performance.