Goto

Collaborating Authors

 Country


New Analysis and Algorithm for Learning with Drifting Distributions

arXiv.org Machine Learning

We present a new analysis of the problem of learning with drifting distributions in the batch setting using the notion of discrepancy. We prove learning bounds based on the Rademacher complexity of the hypothesis set and the discrepancy of distributions both for a drifting PAC scenario and a tracking scenario. Our bounds are always tighter and in some cases substantially improve upon previous ones based on the $L_1$ distance. We also present a generalization of the standard on-line to batch conversion to the drifting scenario in terms of the discrepancy and arbitrary convex combinations of hypotheses. We introduce a new algorithm exploiting these learning guarantees, which we show can be formulated as a simple QP. Finally, we report the results of preliminary experiments demonstrating the benefits of this algorithm.


Graph Degree Linkage: Agglomerative Clustering on a Directed Graph

arXiv.org Machine Learning

This paper proposes a simple but effective graph-based agglomerative algorithm, for clustering high-dimensional data. We explore the different roles of two fundamental concepts in graph theory, indegree and outdegree, in the context of clustering. The average indegree reflects the density near a sample, and the average outdegree characterizes the local geometry around a sample. Based on such insights, we define the affinity measure of clusters via the product of average indegree and average outdegree. The product-based affinity makes our algorithm robust to noise. The algorithm has three main advantages: good performance, easy implementation, and high computational efficiency. We test the algorithm on two fundamental computer vision problems: image clustering and object matching. Extensive experiments demonstrate that it outperforms the state-of-the-arts in both applications.


Multi-Task Averaging

arXiv.org Machine Learning

We present a multi-task learning approach to jointly estimate the means of multiple independent data sets. The proposed multi-task averaging (MTA) algorithm results in a convex combination of the single-task maximum likelihood estimates. We derive the optimal minimum risk estimator and the minimax estimator, and show that these estimators can be efficiently estimated. Simulations and real data experiments demonstrate that MTA estimators often outperform both single-task and James-Stein estimators.


Understanding the Social Cascading of Geekspeak and the Upshots for Social Cognitive Systems

arXiv.org Artificial Intelligence

Barring swarm robotics, a substantial share of current machine-human and machine-machine learning and interaction mechanisms are being developed and fed by results of agent-based computer simulations, game-theoretic models, or robotic experiments based on a dyadic communication pattern. Yet, in real life, humans no less frequently communicate in groups, and gain knowledge and take decisions basing on information cumulatively gleaned from more than one single source. These properties should be taken into consideration in the design of autonomous artificial cognitive systems construed to interact with learn from more than one contact or 'neighbour'. To this end, significant practical import can be gleaned from research applying strict science methodology to human and social phenomena, e.g. to discovery of realistic creativity potential spans, or the 'exposure thresholds' after which new information could be accepted by a cognitive agent. The results will be presented of a project analysing the social propagation of neologisms in a microblogging service. From local, low-level interactions and information flows between agents inventing and imitating discrete lexemes we aim to describe the processes of the emergence of more global systemic order and dynamics, using the latest methods of complexity science. Whether in order to mimic them, or to 'enhance' them, parameters gleaned from complexity science approaches to humans' social and humanistic behaviour should subsequently be incorporated as points of reference in the field of robotics and human-machine interaction.


A non-parametric mixture model for topic modeling over time

arXiv.org Machine Learning

A single, stationary topic model such as latent Dirichlet allocation is inappropriate for modeling corpora that span long time periods, as the popularity of topics is likely to change over time. A number of models that incorporate time have been proposed, but in general they either exhibit limited forms of temporal variation, or require computationally expensive inference methods. In this paper we propose non-parametric Topics over Time (npTOT), a model for time-varying topics that allows an unbounded number of topics and exible distribution over the temporal variations in those topics' popularity. We develop a collapsed Gibbs sampler for the proposed model and compare against existing models on synthetic and real document sets.


A Unified Approach for Modeling and Recognition of Individual Actions and Group Activities

arXiv.org Machine Learning

Recognizing group activities is challenging due to the difficulties in isolating individual entities, finding the respective roles played by the individuals and representing the complex interactions among the participants. Individual actions and group activities in videos can be represented in a common framework as they share the following common feature: both are composed of a set of low-level features describing motions, e.g., optical flow for each pixel or a trajectory for each feature point, according to a set of composition constraints in both temporal and spatial dimensions. In this paper, we present a unified model to assess the similarity between two given individual or group activities. Our approach avoids explicit extraction of individual actors, identifying and representing the inter-person interactions. With the proposed approach, retrieval from a video database can be performed through Query-by-Example; and activities can be recognized by querying videos containing known activities. The suggested video matching process can be performed in an unsupervised manner. We demonstrate the performance of our approach by recognizing a set of human actions and football plays.


Performance Tuning Of J48 Algorithm For Prediction Of Soil Fertility

arXiv.org Machine Learning

Data mining involves the systematic analysis of large data sets, and data mining in agricultural soil datasets is exciting and modern research area. The productive capacity of a soil depends on soil fertility. Achieving and maintaining appropriate levels of soil fertility, is of utmost importance if agricultural land is to remain capable of nourishing crop production. In this research, Steps for building a predictive model of soil fertility have been explained. This paper aims at predicting soil fertility class using decision tree algorithms in data mining . Further, it focuses on performance tuning of J48 decision tree algorithm with the help of meta-techniques such as attribute selection and boosting.


Learning LiNGAM based on data with more variables than observations

arXiv.org Machine Learning

A very important topic in systems biology is developing statistical methods that automatically find causal relations in gene regulatory networks with no prior knowledge of causal connectivity. Many methods have been developed for time series data. However, discovery methods based on steady-state data are often necessary and preferable since obtaining time series data can be more expensive and/or infeasible for many biological systems. A conventional approach is causal Bayesian networks. However, estimation of Bayesian networks is ill-posed. In many cases it cannot uniquely identify the underlying causal network and only gives a large class of equivalent causal networks that cannot be distinguished between based on the data distribution. We propose a new discovery algorithm for uniquely identifying the underlying causal network of genes. To the best of our knowledge, the proposed method is the first algorithm for learning gene networks based on a fully identifiable causal model called LiNGAM. We here compare our algorithm with competing algorithms using artificially-generated data, although it is definitely better to test it based on real microarray gene expression data.


Semi-supervised Clustering Ensemble by Voting

arXiv.org Machine Learning

Clustering ensemble is one of the most recent advances in unsupervised learning. It aims to combine the clustering results obtained using different algorithms or from different runs of the same clustering algorithm for the same data set, this is accomplished using on a consensus function, the efficiency and accuracy of this method has been proven in many works in literature. In the first part of this paper we make a comparison among current approaches to clustering ensemble in literature. All of these approaches consist of two main steps: the ensemble generation and consensus function. In the second part of the paper, we suggest engaging supervision in the clustering ensemble procedure to get more enhancements on the clustering results. Supervision can be applied in two places: either by using semi-supervised algorithms in the clustering ensemble generation step or in the form of a feedback used by the consensus function stage. Also, we introduce a flexible two parameter weighting mechanism, the first parameter describes the compatibility between the datasets under study and the semi-supervised clustering algorithms used to generate the base partitions, the second parameter is used to provide the user feedback on the these partitions. The two parameters are engaged in a "relabeling and voting" based consensus function to produce the final clustering.


A practical approach to language complexity: a Wikipedia case study

arXiv.org Artificial Intelligence

We try to address the issue of language complexity empirically by comparing the simple English Wikipedia (Simple) to comparable samples of the main English Wikipedia (Main). Simple is supposed to use a more simplified language with a limited vocabulary, and editors are explicitly requested to follow this guideline, yet in practice the vocabulary richness of both samples are at the same level. Detailed analysis of longer units (n-grams of words and part of speech tags) shows that the language of Simple is less complex than that of Main primarily due to the use of shorter sentences, as opposed to drastically simplified syntax or vocabulary. Comparing the two language varieties by the Gunning readability index supports this conclusion. We also report on the topical dependence of language complexity, e.g. that the language is more advanced in conceptual articles compared to person-based (biographical) and object-based articles. Finally, we investigate the relation between conflict and language complexity by analyzing the content of the talk pages associated to controversial and peacefully developing articles, concluding that controversy has the effect of reducing language complexity.