Goto

Collaborating Authors

 Country


Controlling wheelchairs by body motions: A learning framework for the adaptive remapping of space

arXiv.org Artificial Intelligence

Learning to operate a vehicle is generally accomplished by forming a new cognitive map between the body motions and extrapersonal space. Here, we consider the challenge of remapping movement-to-space representations in survivors of spinal cord injury, for the control of powered wheelchairs. Our goal is to facilitate this remapping by developing interfaces between residual body motions and navigational commands that exploit the degrees of freedom that disabled individuals are most capable to coordinate. We present a new framework for allowing spinal cord injured persons to control powered wheelchairs through signals derived from their residual mobility. The main novelty of this approach lies in substituting the more common joystick controllers of powered wheelchairs with a sensor shirt. This allows the whole upper body of the user to operate as an adaptive joystick. Considerations about learning and risks have lead us to develop a safe testing environment in 3D Virtual Reality. A Personal Augmented Reality Immersive System (PARIS) allows us to analyse learning skills and provide users with an adequate training to control a simulated wheelchair through the signals generated by body motions in a safe environment. We provide a description of the basic theory, of the development phases and of the operation of the complete system. We also present preliminary results illustrating the processing of the data and supporting of the feasibility of this approach.


On the Undecidability of Fuzzy Description Logics with GCIs with Lukasiewicz t-norm

arXiv.org Artificial Intelligence

Recently there have been some unexpected results concerning Fuzzy Description Logics (FDLs) with General Concept Inclusions (GCIs). They show that, unlike the classical case, the DL ALC with GCIs does not have the finite model property under Lukasiewicz Logic or Product Logic and, specifically, knowledge base satisfiability is an undecidable problem for Product Logic. We complete here the analysis by showing that knowledge base satisfiability is also an undecidable problem for Lukasiewicz Logic.


Robustness of Anytime Bandit Policies

arXiv.org Machine Learning

This paper studies the deviations of the regret in a stochastic multi-armed bandit problem. When the total number of plays n is known beforehand by the agent, Audibert et al. (2009) exhibit a policy such that with probability at least 1-1/n, the regret of the policy is of order log(n). They have also shown that such a property is not shared by the popular ucb1 policy of Auer et al. (2002). This work first answers an open question: it extends this negative result to any anytime policy. The second contribution of this paper is to design anytime robust policies for specific multi-armed bandit problems in which some restrictions are put on the set of possible distributions of the different arms.


A Short Introduction to Preferences: Between AI and Social Choice

Morgan & Claypool Publishers

This book provides a concise introduction to the main research lines in this field, covering aspects such as preference modelling, uncertainty reasoning, social choice, stable matching, and computational aspects of preference aggregation and manipulation. The book is centered around the notion of preference reasoning, both in the single-agent and the multi-agent settings. ISBN 9781608455867, 102 pages.


Variational Gaussian Process Dynamical Systems

arXiv.org Machine Learning

High dimensional time series are endemic in applications of machine learning such as robotics (sensor data), computational biology (gene expression data), vision (video sequences) and graphics (motion capture data). Practical nonlinear probabilistic approaches to this data are required. In this paper we introduce the variational Gaussian process dynamical system. Our work builds on recent variational approximations for Gaussian process latent variable models to allow for nonlinear dimensionality reduction simultaneously with learning a dynamical prior in the latent space. The approach also allows for the appropriate dimensionality of the latent space to be automatically determined. We demonstrate the model on a human motion capture data set and a series of high resolution video sequences.


Query strategy for sequential ontology debugging

arXiv.org Artificial Intelligence

Debugging of ontologies is an important prerequisite for their wide-spread application, especially in areas that rely upon everyday users to create and maintain knowledge bases, as in the case of the Semantic Web. Recent approaches use diagnosis methods to identify causes of inconsistent or incoherent ontologies. However, in most debugging scenarios these methods return many alternative diagnoses, thus placing the burden of fault localization on the user. This paper demonstrates how the target diagnosis can be identified by performing a sequence of observations, that is, by querying an oracle about entailments of the target ontology. We exploit a-priori probabilities of typical user errors to formulate information-theoretic concepts for query selection. Our evaluation showed that the proposed method significantly reduces the number of required queries compared to myopic strategies. We experimented with different probability distributions of user errors and different qualities of the a-priori probabilities. Our measurements showed the advantageousness of information-theoretic approach to query selection even in cases where only a rough estimate of the priors is available.


A Sequence of Relaxations Constraining Hidden Variable Models

arXiv.org Artificial Intelligence

Many widely studied graphical models with latent variables lead to nontrivial constraints on the distribution of the observed variables. Inspired by the Bell inequalities in quantum mechanics, we refer to any linear inequality whose violation rules out some latent variable model as a "hidden variable test" for that model. Our main contribution is to introduce a sequence of relaxations which provides progressively tighter hidden variable tests. We demonstrate applicability to mixtures of sequences of i.i.d. variables, Bell inequalities, and homophily models in social networks. For the last, we demonstrate that our method provides a test that is able to rule out latent homophily as the sole explanation for correlations on a real social network that are known to be due to influence.


Unsupervised Lexicon Acquisition for HPSG-Based Relation Extraction

AAAI Conferences

The paper describes a method of relation extraction, which is based on parsing the input text using a combination of a generic HPSG-based grammar and a highly focused domain- and relation-specific lexicon. We also show a method of unsupervised acquisition of such a lexicon from a large unlabeled corpus. Together, the methods introduce a novel approach to the “Open IE” task, which is superior in accuracy and in quality of relation identification to the existing approaches.


Unsupervised Lexicon Acquisition for HPSG-Based Relation Extraction

AAAI Conferences

The paper describes a method of relation extraction, which is based on parsing the input text using a combination of a generic HPSG-based grammar and a highly focused domain- and relation-specific lexicon. We also show a method of unsupervised acquisition of such a lexicon from a large unlabeled corpus. Together, the methods introduce a novel approach to the “Open IE” task, which is superior in accuracy and in quality of relation identification to the existing approaches.


Unsupervised Lexicon Acquisition for HPSG-Based Relation Extraction

AAAI Conferences

The paper describes a method of relation extraction, which is based on parsing the input text using a combination of a generic HPSG-based grammar and a highly focused domain- and relation-specific lexicon. We also show a method of unsupervised acquisition of such a lexicon from a large unlabeled corpus. Together, the methods introduce a novel approach to the “Open IE” task, which is superior in accuracy and in quality of relation identification to the existing approaches.