Goto

Collaborating Authors

 Country


Plan Development using Local Probabilistic Models

arXiv.org Artificial Intelligence

Approximate models of world state transitions are necessary when building plans for complex systems operating in dynamic environments. External event probabilities can depend on state feature values as well as time spent in that particular state. We assign temporally -dependent probability functions to state transitions. These functions are used to locally compute state probabilities, which are then used to select highly probable goal paths and eliminate improbable states. This probabilistic model has been implemented in the Cooperative Intelligent Real-time Control Architecture (CIRCA), which combines an AI planner with a separate real-time system such that plans are developed, scheduled, and executed with real-time guarantees. We present flight simulation tests that demonstrate how our probabilistic model may improve CIRCA performance.


An Alternative Markov Property for Chain Graphs

arXiv.org Artificial Intelligence

Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially convenient for statistical analysis, arise in such fields as genetics and psychometrics and as models for expert systems and Bayesian belief networks. Lauritzen, Wermuth and Frydenberg (LWF) introduced a Markov property for chain graphs, which are mixed graphs that can be used to represent simultaneously both causal and associative dependencies and which include both UDGs and ADGs as special cases. In this paper an alternative Markov property (AMP) for chain graphs is introduced, which in some ways is a more direct extension of the ADG Markov property than is the LWF property for chain graph.


Object Recognition with Imperfect Perception and Redundant Description

arXiv.org Artificial Intelligence

This paper deals with a scene recognition system in a robotics contex. The general problem is to match images with a priori descriptions. A typical mission would consist in identifying an object in an installation with a vision system situated at the end of a manipulator and with a human operator provided description, formulated in a pseudo-natural language, and possibly redundant. The originality of this work comes from the nature of the description, from the special attention given to the management of imprecision and uncertainty in the interpretation process and from the way to assess the description redundancy so as to reinforce the overall matching likelihood.


Approximations for Decision Making in the Dempster-Shafer Theory of Evidence

arXiv.org Artificial Intelligence

The computational complexity of reasoning within the Dempster-Shafer theory of evidence is one of the main points of criticism this formalism has to face. To overcome this difficulty various approximation algorithms have been suggested that aim at reducing the number of focal elements in the belief functions involved. Besides introducing a new algorithm using this method, this paper describes an empirical study that examines the appropriateness of these approximation procedures in decision making situations. It presents the empirical findings and discusses the various tradeoffs that have to be taken into account when actually applying one of these methods.


A Qualitative Markov Assumption and its Implications for Belief Change

arXiv.org Artificial Intelligence

The study of belief change has been an active area in philosophy and AI. In recent years two special cases of belief change, belief revision and belief update, have been studied in detail. Roughly, revision treats a surprising observation as a sign that previous beliefs were wrong, while update treats a surprising observation as an indication that the world has changed. In general, we would expect that an agent making an observation may both want to revise some earlier beliefs and assume that some change has occurred in the world. We define a novel approach to belief change that allows us to do this, by applying ideas from probability theory in a qualitative setting. The key idea is to use a qualitative Markov assumption, which says that state transitions are independent. We show that a recent approach to modeling qualitative uncertainty using plausibility measures allows us to make such a qualitative Markov assumption in a relatively straightforward way, and show how the Markov assumption can be used to provide an attractive belief-change model.


A Structurally and Temporally Extended Bayesian Belief Network Model: Definitions, Properties, and Modeling Techniques

arXiv.org Artificial Intelligence

We developed the language of Modifiable Temporal Belief Networks (MTBNs) as a structural and temporal extension of Bayesian Belief Networks (BNs) to facilitate normative temporal and causal modeling under uncertainty. In this paper we present definitions of the model, its components, and its fundamental properties. We also discuss how to represent various types of temporal knowledge, with an emphasis on hybrid temporal-explicit time modeling, dynamic structures, avoiding causal temporal inconsistencies, and dealing with models that involve simultaneously actions (decisions) and causal and non-causal associations. We examine the relationships among BNs, Modifiable Belief Networks, and MTBNs with a single temporal granularity, and suggest areas of application suitable to each one of them.


Some Experiments with Real-Time Decision Algorithms

arXiv.org Artificial Intelligence

Real-time Decision algorithms are a class of incremental resource-bounded [Horvitz, 89] or anytime [Dean, 93] algorithms for evaluating influence diagrams. We present a test domain for real-time decision algorithms, and the results of experiments with several Real-time Decision Algorithms in this domain. The results demonstrate high performance for two algorithms, a decision-evaluation variant of Incremental Probabilisitic Inference [D'Ambrosio 93] and a variant of an algorithm suggested by Goldszmidt, [Goldszmidt, 95], PK-reduced. We discuss the implications of these experimental results and explore the broader applicability of these algorithms.


An Algorithm for Finding Minimum d-Separating Sets in Belief Networks

arXiv.org Artificial Intelligence

The criterion commonly used in directed acyclic graphs (dags) for testing graphical independence is the well-known d-separation criterion. It allows us to build graphical representations of dependency models (usually probabilistic dependency models) in the form of belief networks, which make easy interpretation and management of independence relationships possible, without reference to numerical parameters (conditional probabilities). In this paper, we study the following combinatorial problem: finding the minimum d-separating set for two nodes in a dag. This set would represent the minimum information (in the sense of minimum number of variables) necessary to prevent these two nodes from influencing each other. The solution to this basic problem and some of its extensions can be useful in several ways, as we shall see later. Our solution is based on a two-step process: first, we reduce the original problem to the simpler one of finding a minimum separating set in an undirected graph, and second, we develop an algorithm for solving it.


Entailment in Probability of Thresholded Generalizations

arXiv.org Artificial Intelligence

A nonmonotonic logic of thresholded generalizations is presented. Given propositions A and B from a language L and a positive integer k, the thresholded generalization A=>B{k} means that the conditional probability P(B|A) falls short of one by no more than c*d^k. A two-level probability structure is defined. At the lower level, a model is defined to be a probability function on L. At the upper level, there is a probability distribution over models. A definition is given of what it means for a collection of thresholded generalizations to entail another thresholded generalization. This nonmonotonic entailment relation, called "entailment in probability", has the feature that its conclusions are "probabilistically trustworthy" meaning that, given true premises, it is improbable that an entailed conclusion would be false. A procedure is presented for ascertaining whether any given collection of premises entails any given conclusion. It is shown that entailment in probability is closely related to Goldszmidt and Pearl's System-Z^+, thereby demonstrating that the conclusions of System-Z^+ are probabilistically trustworthy.


Computing Upper and Lower Bounds on Likelihoods in Intractable Networks

arXiv.org Artificial Intelligence

We present deterministic techniques for computing upper and lower bounds on marginal probabilities in sigmoid and noisy-OR networks. These techniques become useful when the size of the network (or clique size) precludes exact computations. We illustrate the tightness of the bounds by numerical experiments.