Goto

Collaborating Authors

 Country


Cumulative distribution networks and the derivative-sum-product algorithm

arXiv.org Machine Learning

We introduce a new type of graphical model called a "cumulative distribution network" (CDN), which expresses a joint cumulative distribution as a product of local functions. Each local function can be viewed as providing evidence about possible orderings, or rankings, of variables. Interestingly, we find that the conditional independence properties of CDNs are quite different from other graphical models. We also describe a messagepassing algorithm that efficiently computes conditional cumulative distributions. Due to the unique independence properties of the CDN, these messages do not in general have a one-to-one correspondence with messages exchanged in standard algorithms, such as belief propagation. We demonstrate the application of CDNs for structured ranking learning using a previously-studied multi-player gaming dataset.


Causal discovery of linear acyclic models with arbitrary distributions

arXiv.org Machine Learning

An important task in data analysis is the discovery of causal relationships between observed variables. For continuous-valued data, linear acyclic causal models are commonly used to model the data-generating process, and the inference of such models is a well-studied problem. However, existing methods have significant limitations. Methods based on conditional independencies (Spirtes et al. 1993; Pearl 2000) cannot distinguish between independence-equivalent models, whereas approaches purely based on Independent Component Analysis (Shimizu et al. 2006) are inapplicable to data which is partially Gaussian. In this paper, we generalize and combine the two approaches, to yield a method able to learn the model structure in many cases for which the previous methods provide answers that are either incorrect or are not as informative as possible. We give exact graphical conditions for when two distinct models represent the same family of distributions, and empirically demonstrate the power of our method through thorough simulations.


AND/OR Importance Sampling

arXiv.org Artificial Intelligence

The paper introduces AND/OR importance sampling for probabilistic graphical models. In contrast to importance sampling, AND/OR importance sampling caches samples in the AND/OR space and then extracts a new sample mean from the stored samples. We prove that AND/OR importance sampling may have lower variance than importance sampling; thereby providing a theoretical justification for preferring it over importance sampling. Our empirical evaluation demonstrates that AND/OR importance sampling is far more accurate than importance sampling in many cases.


Greedy Block Coordinate Descent for Large Scale Gaussian Process Regression

arXiv.org Machine Learning

We propose a variable decomposition algorithm -greedy block coordinate descent (GBCD)- in order to make dense Gaussian process regression practical for large scale problems. GBCD breaks a large scale optimization into a series of small sub-problems. The challenge in variable decomposition algorithms is the identification of a subproblem (the active set of variables) that yields the largest improvement. We analyze the limitations of existing methods and cast the active set selection into a zero-norm constrained optimization problem that we solve using greedy methods. By directly estimating the decrease in the objective function, we obtain not only efficient approximate solutions for GBCD, but we are also able to demonstrate that the method is globally convergent. Empirical comparisons against competing dense methods like Conjugate Gradient or SMO show that GBCD is an order of magnitude faster. Comparisons against sparse GP methods show that GBCD is both accurate and capable of handling datasets of 100,000 samples or more.


Complexity of Inference in Graphical Models

arXiv.org Artificial Intelligence

It is well-known that inference in graphical models is hard in the worst case, but tractable for models with bounded treewidth. We ask whether treewidth is the only structural criterion of the underlying graph that enables tractable inference. In other words, is there some class of structures with unbounded treewidth in which inference is tractable? Subject to a combinatorial hypothesis due to Robertson et al. (1994), we show that low treewidth is indeed the only structural restriction that can ensure tractability. Thus, even for the "best case" graph structure, there is no inference algorithm with complexity polynomial in the treewidth.


Critical behavior in a cross-situational lexicon learning scenario

arXiv.org Artificial Intelligence

The associationist account for early word-learning is based on the co-occurrence between objects and words. Here we examine the performance of a simple associative learning algorithm for acquiring the referents of words in a cross-situational scenario affected by noise produced by out-of-context words. We find a critical value of the noise parameter $\gamma_c$ above which learning is impossible. We use finite-size scaling to show that the sharpness of the transition persists across a region of order $\tau^{-1/2}$ about $\gamma_c$, where $\tau$ is the number of learning trials, as well as to obtain the learning error (scaling function) in the critical region. In addition, we show that the distribution of durations of periods when the learning error is zero is a power law with exponent -3/2 at the critical point.


Identifying reasoning patterns in games

arXiv.org Artificial Intelligence

We present an algorithm that identifies the reasoning patterns of agents in a game, by iteratively examining the graph structure of its Multi-Agent Influence Diagram (MAID) representation. If the decision of an agent participates in no reasoning patterns, then we can effectively ignore that decision for the purpose of calculating a Nash equilibrium for the game. In some cases, this can lead to exponential time savings in the process of equilibrium calculation. Moreover, our algorithm can be used to enumerate the reasoning patterns in a game, which can be useful for constructing more effective computerized agents interacting with humans.


Speeding Up Planning in Markov Decision Processes via Automatically Constructed Abstractions

arXiv.org Artificial Intelligence

In this paper, we consider planning in stochastic shortest path (SSP) problems, a subclass of Markov Decision Problems (MDP). We focus on medium-size problems whose state space can be fully enumerated. This problem has numerous important applications, such as navigation and planning under uncertainty. We propose a new approach for constructing a multi-level hierarchy of progressively simpler abstractions of the original problem. Once computed, the hierarchy can be used to speed up planning by first finding a policy for the most abstract level and then recursively refining it into a solution to the original problem. This approach is fully automated and delivers a speed-up of two orders of magnitude over a state-of-the-art MDP solver on sample problems while returning near-optimal solutions. We also prove theoretical bounds on the loss of solution optimality resulting from the use of abstractions.


Adaptive Inference on General Graphical Models

arXiv.org Artificial Intelligence

Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional probabilities and dependencies in logarithmic time. We give experimental results for an implementation of our algorithm, and demonstrate its potential performance benefit in the study of protein structure.


Learning Inclusion-Optimal Chordal Graphs

arXiv.org Machine Learning

Chordal graphs can be used to encode dependency models that are representable by both directed acyclic and undirected graphs. This paper discusses a very simple and efficient algorithm to learn the chordal structure of a probabilistic model from data. The algorithm is a greedy hill-climbing search algorithm that uses the inclusion boundary neighborhood over chordal graphs. In the limit of a large sample size and under appropriate hypotheses on the scoring criterion, we prove that the algorithm will find a structure that is inclusion-optimal when the dependency model of the data-generating distribution can be represented exactly by an undirected graph. The algorithm is evaluated on simulated datasets.