Country
Subgraph Matching Kernels for Attributed Graphs
We propose graph kernels based on subgraph matchings, i.e. structure-preserving bijections between subgraphs. While recently proposed kernels based on common subgraphs (Wale et al., 2008; Shervashidze et al., 2009) in general can not be applied to attributed graphs, our approach allows to rate mappings of subgraphs by a flexible scoring scheme comparing vertex and edge attributes by kernels. We show that subgraph matching kernels generalize several known kernels. To compute the kernel we propose a graph-theoretical algorithm inspired by a classical relation between common subgraphs of two graphs and cliques in their product graph observed by Levi (1973). Encouraging experimental results on a classification task of real-world graphs are presented.
Hierarchical Exploration for Accelerating Contextual Bandits
Yue, Yisong, Hong, Sue Ann, Guestrin, Carlos
Contextual bandit learning is an increasingly popular approach to optimizing recommender systems via user feedback, but can be slow to converge in practice due to the need for exploring a large feature space. In this paper, we propose a coarse-to-fine hierarchical approach for encoding prior knowledge that drastically reduces the amount of exploration required. Intuitively, user preferences can be reasonably embedded in a coarse low-dimensional feature space that can be explored efficiently, requiring exploration in the high-dimensional space only as necessary. We introduce a bandit algorithm that explores within this coarse-to-fine spectrum, and prove performance guarantees that depend on how well the coarse space captures the user's preferences. We demonstrate substantial improvement over conventional bandit algorithms through extensive simulation as well as a live user study in the setting of personalized news recommendation.
Bayesian Multicategory Support Vector Machines
Zhang, Zhihua, Jordan, Michael I.
We show that the multi-class support vector machine (MSVM) proposed by Lee et. al. (2004), can be viewed as a MAP estimation procedure under an appropriate probabilistic interpretation of the classifier. We also show that this interpretation can be extended to a hierarchical Bayesian architecture and to a fully-Bayesian inference procedure for multi-class classification based on data augmentation. We present empirical results that show that the advantages of the Bayesian formalism are obtained without a loss in classification accuracy.
Modeling Images using Transformed Indian Buffet Processes
Zhai, Ke, Hu, Yuening, Williamson, Sinead, Boyd-Graber, Jordan
Latent feature models are attractive for image modeling, since images generally contain multiple objects. However, many latent feature models ignore that objects can appear at different locations or require pre-segmentation of images. While the transformed Indian buffet process (tIBP) provides a method for modeling transformation-invariant features in unsegmented binary images, its current form is inappropriate for real images because of its computational cost and modeling assumptions. We combine the tIBP with likelihoods appropriate for real images and develop an efficient inference, using the cross-correlation between images and features, that is theoretically and empirically faster than existing inference techniques. Our method discovers reasonable components and achieve effective image reconstruction in natural images.
An Infinite Latent Attribute Model for Network Data
Palla, Konstantina, Knowles, David, Ghahramani, Zoubin
Latent variable models for network data extract a summary of the relational structure underlying an observed network. The simplest possible models subdivide nodes of the network into clusters; the probability of a link between any two nodes then depends only on their cluster assignment. Currently available models can be classified by whether clusters are disjoint or are allowed to overlap. These models can explain a "flat" clustering structure. Hierarchical Bayesian models provide a natural approach to capture more complex dependencies. We propose a model in which objects are characterised by a latent feature vector. Each feature is itself partitioned into disjoint groups (subclusters), corresponding to a second layer of hierarchy. In experimental comparisons, the model achieves significantly improved predictive performance on social and biological link prediction tasks. The results indicate that models with a single layer hierarchy over-simplify real networks.
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Ahn, Sungjin, Korattikara, Anoop, Welling, Max
In this paper we address the following question: Can we approximately sample from a Bayesian posterior distribution if we are only allowed to touch a small mini-batch of data-items for every sample we generate?. An algorithm based on the Langevin equation with stochastic gradients (SGLD) was previously proposed to solve this, but its mixing rate was slow. By leveraging the Bayesian Central Limit Theorem, we extend the SGLD algorithm so that at high mixing rates it will sample from a normal approximation of the posterior, while for slow mixing rates it will mimic the behavior of SGLD with a pre-conditioner matrix. As a bonus, the proposed algorithm is reminiscent of Fisher scoring (with stochastic gradients) and as such an efficient optimizer during burn-in.
Matrix Tile Analysis
Givoni, Inmar, Cheung, Vincent, Frey, Brendan J.
Many tasks require finding groups of elements in a matrix of numbers, symbols or class likelihoods. One approach is to use efficient bi- or tri-linear factorization techniques including PCA, ICA, sparse matrix factorization and plaid analysis. These techniques are not appropriate when addition and multiplication of matrix elements are not sensibly defined. More directly, methods like bi-clustering can be used to classify matrix elements, but these methods make the overly-restrictive assumption that the class of each element is a function of a row class and a column class. We introduce a general computational problem, `matrix tile analysis' (MTA), which consists of decomposing a matrix into a set of non-overlapping tiles, each of which is defined by a subset of usually nonadjacent rows and columns. MTA does not require an algebra for combining tiles, but must search over discrete combinations of tile assignments. Exact MTA is a computationally intractable integer programming problem, but we describe an approximate iterative technique and a computationally efficient sum-product relaxation of the integer program. We compare the effectiveness of these methods to PCA and plaid on hundreds of randomly generated tasks. Using double-gene-knockout data, we show that MTA finds groups of interacting yeast genes that have biologically-related functions.
A Scalable Bootstrap for Massive Data
Kleiner, Ariel, Talwalkar, Ameet, Sarkar, Purnamrita, Jordan, Michael I.
The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets---which are increasingly prevalent---the computation of bootstrap-based quantities can be prohibitively demanding computationally. While variants such as subsampling and the $m$ out of $n$ bootstrap can be used in principle to reduce the cost of bootstrap computations, we find that these methods are generally not robust to specification of hyperparameters (such as the number of subsampled data points), and they often require use of more prior information (such as rates of convergence of estimators) than the bootstrap. As an alternative, we introduce the Bag of Little Bootstraps (BLB), a new procedure which incorporates features of both the bootstrap and subsampling to yield a robust, computationally efficient means of assessing the quality of estimators. BLB is well suited to modern parallel and distributed computing architectures and furthermore retains the generic applicability and statistical efficiency of the bootstrap. We demonstrate BLB's favorable statistical performance via a theoretical analysis elucidating the procedure's properties, as well as a simulation study comparing BLB to the bootstrap, the $m$ out of $n$ bootstrap, and subsampling. In addition, we present results from a large-scale distributed implementation of BLB demonstrating its computational superiority on massive data, a method for adaptively selecting BLB's hyperparameters, an empirical study applying BLB to several real datasets, and an extension of BLB to time series data.
Greedy Algorithms for Sparse Reinforcement Learning
Painter-Wakefield, Christopher, Parr, Ronald
Feature selection and regularization are becoming increasingly prominent tools in the efforts of the reinforcement learning (RL) community to expand the reach and applicability of RL. One approach to the problem of feature selection is to impose a sparsity-inducing form of regularization on the learning method. Recent work on $L_1$ regularization has adapted techniques from the supervised learning literature for use with RL. Another approach that has received renewed attention in the supervised learning community is that of using a simple algorithm that greedily adds new features. Such algorithms have many of the good properties of the $L_1$ regularization methods, while also being extremely efficient and, in some cases, allowing theoretical guarantees on recovery of the true form of a sparse target function from sampled data. This paper considers variants of orthogonal matching pursuit (OMP) applied to reinforcement learning. The resulting algorithms are analyzed and compared experimentally with existing $L_1$ regularized approaches. We demonstrate that perhaps the most natural scenario in which one might hope to achieve sparse recovery fails; however, one variant, OMP-BRM, provides promising theoretical guarantees under certain assumptions on the feature dictionary. Another variant, OMP-TD, empirically outperforms prior methods both in approximation accuracy and efficiency on several benchmark problems.
Copula Mixture Model for Dependency-seeking Clustering
We introduce a copula mixture model to perform dependency-seeking clustering when co-occurring samples from different data sources are available. The model takes advantage of the great flexibility offered by the copulas framework to extend mixtures of Canonical Correlation Analysis to multivariate data with arbitrary continuous marginal densities. We formulate our model as a non-parametric Bayesian mixture, while providing efficient MCMC inference. Experiments on synthetic and real data demonstrate that the increased flexibility of the copula mixture significantly improves the clustering and the interpretability of the results.