Goto

Collaborating Authors

 Country


The Manifold Tangent Classifier

Neural Information Processing Systems

We combine three important ideas present in previous work for building classifiers: thesemi-supervised hypothesis (the input distribution contains information about the classifier), the unsupervised manifold hypothesis (data density concentrates nearlow-dimensional manifolds), and the manifold hypothesis for classification (differentclasses correspond to disjoint manifolds separated by low density). We exploit a novel algorithm for capturing manifold structure (high-order contractive auto-encoders) and we show how it builds a topological atlas of charts, each chart being characterized by the principal singular vectors of the Jacobian of a representation mapping. This representation learning algorithm can be stacked to yield a deep architecture, and we combine it with a domain knowledge-free version of the TangentProp algorithm to encourage the classifier to be insensitive to local directions changes along the manifold. Record-breaking classification results are obtained.


Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Neural Information Processing Systems

Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While regionlevel modelsoften feature dense pairwise connectivity, pixel-level models are considerably largerand have only permitted sparse graph structures. In this paper, we consider fully connected CRF models defined on the complete set of pixels in an image. The resulting graphs have billions of edges, making traditional inference algorithms impractical. Our main contribution is a highly efficient approximate inference algorithm for fully connected CRF models in which the pairwise edge potentials are defined by a linear combination of Gaussian kernels. Our experiments demonstratethat dense connectivity at the pixel level substantially improves segmentation and labeling accuracy.


Optimal Reinforcement Learning for Gaussian Systems

Neural Information Processing Systems

The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finite-dimensional projection gives an impression for how this result may be helpful.


Testing a Bayesian Measure of Representativeness Using a Large Image Database

Neural Information Processing Systems

How do people determine which elements of a set are most representative of that set? We extend an existing Bayesian measure of representativeness, which indicates therepresentativeness of a sample from a distribution, to define a measure of the representativeness of an item to a set. We show that this measure is formally related to a machine learning method known as Bayesian Sets. Building on this connection, we derive an analytic expression for the representativeness of objects described by a sparse vector of binary features. We then apply this measure to a large database of images, using it to determine which images are the most representative membersof different sets. Comparing the resulting predictions to human judgments of representativeness provides a test of this measure with naturalistic stimuli, and illustrates how databases that are more commonly used in computer vision and machine learning can be used to evaluate psychological theories.


Object Detection with Grammar Models

Neural Information Processing Systems

Compositional models provide an elegant formalism for representing the visual appearance of highly variable objects. While such models are appealing from a theoretical point of view, it has been difficult to demonstrate that they lead to performance advantages on challenging datasets. Here we develop a grammar model for person detection and show that it outperforms previous high-performance systems on the PASCAL benchmark. Our model represents people using a hierarchy of deformable parts, variable structure and an explicit model of occlusion for partially visible objects. To train the model, we introduce a new discriminative framework for learning structured prediction models from weakly-labeled data.


Nonstandard Interpretations of Probabilistic Programs for Efficient Inference

Neural Information Processing Systems

Probabilistic programming languages allow modelers to specify a stochastic process using syntax that resembles modern programming languages. Because the program is in machine-readable format, a variety of techniques from compiler design and program analysis can be used to examine the structure of the distribution represented by the probabilistic program. We show how nonstandard interpretations of probabilistic programs can be used to craft efficient inference algorithms: information about the structure of a distribution (such as gradients or dependencies) is generated as a monad-like side computation while executing the program. These interpretations can be easily coded using special-purpose objects and operator overloading. We implement two examples of nonstandard interpretations in two different languages, and use them as building blocks to construct inference algorithms: automatic differentiation, which enables gradient based methods, and provenance tracking, which enables efficient construction of global proposals.


Learning Anchor Planes for Classification

Neural Information Processing Systems

Local Coordinate Coding (LCC) [18] is a method for modeling functions of data lying on non-linear manifolds. It provides a set of anchor points which form a local coordinate system, such that each data point on the manifold can be approximated by a linear combination of its anchor points, and the linear weights become the local coordinate coding. In this paper we propose encoding data using orthogonal anchor planes, rather than anchor points. Our method needs only a few orthogonal anchor planes for coding, and it can linearize any (\alpha,\beta,p)-Lipschitz smooth nonlinear function with a fixed expected value of the upper-bound approximation error on any high dimensional data. In practice, the orthogonal coordinate system can be easily learned by minimizing this upper bound using singular value decomposition (SVD). We apply our method to model the coordinates locally in linear SVMs for classification tasks, and our experiment on MNIST shows that using only 50 anchor planes our method achieves 1.72% error rate, while LCC achieves 1.90% error rate using 4096 anchor points.



Fast and Accurate k-means For Large Datasets

Neural Information Processing Systems

Clustering is a popular problem with many applications. We consider the k-means problem in the situation where the data is too large to be stored in main memory and must be accessed sequentially, such as from a disk, and where we must use as little memory as possible. Our algorithm is based on recent theoretical results, with significant improvements to make it practical. Our approach greatly simplifies arecently developed algorithm, both in design and in analysis, and eliminates large constant factors in the approximation guarantee, the memory requirements, and the running time. We then incorporate approximate nearest neighbor search to compute k-means in o(nk) (where n is the number of data points; note that computing thecost, given a solution, takes 8(nk) time). We show that our algorithm compares favorably to existing algorithms - both theoretically and experimentally, thus providing state-of-the-art performance in both theory and practice.


Beating SGD: Learning SVMs in Sublinear Time

Neural Information Processing Systems

We present an optimization approach for linear SVMs based on a stochastic primal-dual approach, where the primal step is akin to an importance-weighted SGD, and the dual step is a stochastic update on the importance weights. This yields an optimization method with a sublinear dependence on the training set size, and the first method for learning linear SVMs with runtime less then the size of the training set required for learning!