Country
Restricting exchangeable nonparametric distributions
Williamson, Sinead, Ghahramani, Zoubin, MacEachern, Steven N., Xing, Eric P.
Distributions over exchangeable matrices with infinitely many columns, such as the Indian buffet process, are useful in constructing nonparametric latent variable models. However, the distribution implied by such models over the number of features exhibited by each data point may be poorly- suited for many modeling tasks. In this paper, we propose a class of exchangeable nonparametric priors obtained by restricting the domain of existing models. Such models allow us to specify the distribution over the number of features per data point, and can achieve better performance on data sets where the number of features is not well-modeled by the original distribution.
Sparse Reward Processes
We introduce a class of learning problems where the agent is presented with a series of tasks. Intuitively, if there is relation among those tasks, then the information gained during execution of one task has value for the execution of another task. Consequently, the agent is intrinsically motivated to explore its environment beyond the degree necessary to solve the current task it has at hand. We develop a decision theoretic setting that generalises standard reinforcement learning tasks and captures this intuition. More precisely, we consider a multi-stage stochastic game between a learning agent and an opponent. We posit that the setting is a good model for the problem of life-long learning in uncertain environments, where while resources must be spent learning about currently important tasks, there is also the need to allocate effort towards learning about aspects of the world which are not relevant at the moment. This is due to the fact that unpredictable future events may lead to a change of priorities for the decision maker. Thus, in some sense, the model "explains" the necessity of curiosity. Apart from introducing the general formalism, the paper provides algorithms. These are evaluated experimentally in some exemplary domains. In addition, performance bounds are proven for some cases of this problem.
A Method of Moments for Mixture Models and Hidden Markov Models
Anandkumar, Animashree, Hsu, Daniel, Kakade, Sham M.
Mixture models are a fundamental tool in applied statistics and machine learning for treating data taken from multiple subpopulations. The current practice for estimating the parameters of such models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and existing consistent methods are unfavorable due to their high computational and sample complexity which typically scale exponentially with the number of mixture components. This work develops an efficient method of moments approach to parameter estimation for a broad class of high-dimensional mixture models with many components, including multi-view mixtures of Gaussians (such as mixtures of axis-aligned Gaussians) and hidden Markov models. The new method leads to rigorous unsupervised learning results for mixture models that were not achieved by previous works; and, because of its simplicity, it offers a viable alternative to EM for practical deployment.
Learning Probability Measures with respect to Optimal Transport Metrics
Canas, Guillermo D., Rosasco, Lorenzo
We study the problem of estimating, in the sense of optimal transport metrics, a measure which is assumed supported on a manifold embedded in a Hilbert space. By establishing a precise connection between optimal transport metrics, optimal quantization, and learning theory, we derive new probabilistic bounds for the performance of a classic algorithm in unsupervised learning (k-means), when used to produce a probability measure derived from the data. In the course of the analysis, we arrive at new lower bounds, as well as probabilistic upper bounds on the convergence rate of the empirical law of large numbers, which, unlike existing bounds, are applicable to a wide class of measures.
Statistically adaptive learning for a general class of cost functions (SA L-BFGS)
Purpura, Stephen, Hillard, Dustin, Hubenthal, Mark, Walsh, Jim, Golder, Scott, Smith, Scott
We present a system that enables rapid model experimentation for tera-scale machine learning with trillions of non-zero features, billions of training examples, and millions of parameters. Our contribution to the literature is a new method (SA L-BFGS) for changing batch L-BFGS to perform in near real-time by using statistical tools to balance the contributions of previous weights, old training examples, and new training examples to achieve fast convergence with few iterations. The result is, to our knowledge, the most scalable and flexible linear learning system reported in the literature, beating standard practice with the current best system (Vowpal Wabbit and AllReduce). Using the KDD Cup 2012 data set from Tencent, Inc. we provide experimental results to verify the performance of this method.
Conquering the rating bound problem in neighborhood-based collaborative filtering: a function recovery approach
Huang, Junming, Cheng, Xue-Qi, Shen, Hua-Wei, Sun, Xiaoming, Zhou, Tao, Jin, Xiaolong
As an important tool for information filtering in the era of socialized web, recommender systems have witnessed rapid development in the last decade. As benefited from the better interpretability, neighborhood-based collaborative filtering techniques, such as item-based collaborative filtering adopted by Amazon, have gained a great success in many practical recommender systems. However, the neighborhood-based collaborative filtering method suffers from the rating bound problem, i.e., the rating on a target item that this method estimates is bounded by the observed ratings of its all neighboring items. Therefore, it cannot accurately estimate the unobserved rating on a target item, if its ground truth rating is actually higher (lower) than the highest (lowest) rating over all items in its neighborhood. In this paper, we address this problem by formalizing rating estimation as a task of recovering a scalar rating function. With a linearity assumption, we infer all the ratings by optimizing the low-order norm, e.g., the $l_1/2$-norm, of the second derivative of the target scalar function, while remaining its observed ratings unchanged. Experimental results on three real datasets, namely Douban, Goodreads and MovieLens, demonstrate that the proposed approach can well overcome the rating bound problem. Particularly, it can significantly improve the accuracy of rating estimation by 37% than the conventional neighborhood-based methods.
Estimating the Hessian by Back-propagating Curvature
Martens, James, Sutskever, Ilya, Swersky, Kevin
In this work we develop Curvature Propagation (CP), a general technique for efficiently computing unbiased approximations of the Hessian of any function that is computed using a computational graph. At the cost of roughly two gradient evaluations, CP can give a rank-1 approximation of the whole Hessian, and can be repeatedly applied to give increasingly precise unbiased estimates of any or all of the entries of the Hessian. Of particular interest is the diagonal of the Hessian, for which no general approach is known to exist that is both efficient and accurate. We show in experiments that CP turns out to work well in practice, giving very accurate estimates of the Hessian of neural networks, for example, with a relatively small amount of work. We also apply CP to Score Matching, where a diagonal of a Hessian plays an integral role in the Score Matching objective, and where it is usually computed exactly using inefficient algorithms which do not scale to larger and more complex models.
Multiresolution Gaussian Processes
Fox, Emily B., Dunson, David B.
We propose a multiresolution Gaussian process to capture long-range, non-Markovian dependencies while allowing for abrupt changes. The multiresolution GP hierarchically couples a collection of smooth GPs, each defined over an element of a random nested partition. Long-range dependencies are captured by the top-level GP while the partition points define the abrupt changes. Due to the inherent conjugacy of the GPs, one can analytically marginalize the GPs and compute the conditional likelihood of the observations given the partition tree. This property allows for efficient inference of the partition itself, for which we employ graph-theoretic techniques. We apply the multiresolution GP to the analysis of Magnetoencephalography (MEG) recordings of brain activity.
Isoelastic Agents and Wealth Updates in Machine Learning Markets
Storkey, Amos, Millin, Jono, Geras, Krzysztof
Recently, prediction markets have shown considerable promise for developing flexible mechanisms for machine learning. In this paper, agents with isoelastic utilities are considered. It is shown that the costs associated with homogeneous markets of agents with isoelastic utilities produce equilibrium prices corresponding to alpha-mixtures, with a particular form of mixing component relating to each agent's wealth. We also demonstrate that wealth accumulation for logarithmic and other isoelastic agents (through payoffs on prediction of training targets) can implement both Bayesian model updates and mixture weight updates by imposing different market payoff structures. An iterative algorithm is given for market equilibrium computation. We demonstrate that inhomogeneous markets of agents with isoelastic utilities outperform state of the art aggregate classifiers such as random forests, as well as single classifiers (neural networks, decision trees) on a number of machine learning benchmarks, and show that isoelastic combination methods are generally better than their logarithmic counterparts.
A Split-Merge Framework for Comparing Clusterings
Xiang, Qiaoliang, Mao, Qi, Chai, Kian Ming, Chieu, Hai Leong, Tsang, Ivor, Zhao, Zhendong
Clustering evaluation measures are frequently used to evaluate the performance of algorithms. However, most measures are not properly normalized and ignore some information in the inherent structure of clusterings. We model the relation between two clusterings as a bipartite graph and propose a general component-based decomposition formula based on the components of the graph. Most existing measures are examples of this formula. In order to satisfy consistency in the component, we further propose a split-merge framework for comparing clusterings of different data sets. Our framework gives measures that are conditionally normalized, and it can make use of data point information, such as feature vectors and pairwise distances. We use an entropy-based instance of the framework and a coreference resolution data set to demonstrate empirically the utility of our framework over other measures.