Goto

Collaborating Authors

 Country


Joint 3D Estimation of Objects and Scene Layout

Neural Information Processing Systems

We propose a novel generative model that is able to reason jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, we infer the scene topology, geometry as well as traffic activities from a short video sequence acquired with a single camera mounted on a moving car. Our generative model takes advantage of dynamic information in the form of vehicle tracklets as well as static information coming from semantic labels and geometry (i.e., vanishing points). Experiments show that our approach outperforms a discriminative baseline based on multiple kernel learning (MKL) which has access to the same image information. Furthermore, as we reason about objects in 3D, we are able to significantly increase the performance of state-of-the-art object detectors in their ability to estimate object orientation.


Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation

Neural Information Processing Systems

Many machine learning and signal processing problems can be formulated as linearly constrained convex programs, which could be efficiently solved by the alternating direction method (ADM). However, usually the subproblems in ADM are easily solvable only when the linear mappings in the constraints are identities. To address this issue, we propose a linearized ADM (LADM) method by linearizing the quadratic penalty term and adding a proximal term when solving the subproblems. For fast convergence, we also allow the penalty to change adaptively according a novel update rule. We prove the global convergence of LADM with adaptive penalty (LADMAP). As an example, we apply LADMAP to solve low-rank representation (LRR), which is an important subspace clustering technique yet suffers from high computation cost. By combining LADMAP with a skinny SVD representation technique, we are able to reduce the complexity $O(n^3)$ of the original ADM based method to $O(rn^2)$, where $r$ and $n$ are the rank and size of the representation matrix, respectively, hence making LRR possible for large scale applications. Numerical experiments verify that for LRR our LADMAP based methods are much faster than state-of-the-art algorithms.


Learning person-object interactions for action recognition in still images

Neural Information Processing Systems

We investigate a discriminatively trained model of person-object interactions for recognizing common human actions in still images. We build on the locally order-less spatial pyramid bag-of-features model, which was shown to perform extremely well on a range of object, scene and human action recognition tasks. We introduce three principal contributions. First, we replace the standard quantized local HOG/SIFT features with stronger discriminatively trained body part and object detectors. Second, we introduce new person-object interaction features based on spatial co-occurrences of individual body parts and objects. Third, we address the combinatorial problem of a large number of possible interaction pairs and propose a discriminative selection procedure using a linear support vector machine (SVM) with a sparsity inducing regularizer. Learning of action-specific body part and object interactions bypasses the difficult problem of estimating the complete human body pose configuration. Benefits of the proposed model are shown on human action recognition in consumer photographs, outperforming the strong bag-of-features baseline.


Multiple Instance Learning on Structured Data

Neural Information Processing Systems

Most existing Multiple-Instance Learning (MIL) algorithms assume data instances and/or data bags are independently and identically distributed. But there often exists rich additional dependency/structure information between instances/bags within many applications of MIL. Ignoring this structure information limits the performance of existing MIL algorithms. This paper explores the research problem as multiple instance learning on structured data (MILSD) and formulates a novel framework that considers additional structure information. In particular, an effective and efficient optimization algorithm has been proposed to solve the original non-convex optimization problem by using a combination of Concave-Convex Constraint Programming (CCCP) method and an adapted Cutting Plane method, which deals with two sets of constraints caused by learning on instances within individual bags and learning on structured data. Our method has the nice convergence property, with specified precision on each set of constraints. Experimental results on three different applications, i.e., webpage classification, market targeting, and protein fold identification, clearly demonstrate the advantages of the proposed method over state-of-the-art methods.


Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition

Neural Information Processing Systems

We present a novel approach to efficiently learn a label tree for large scale classification with many classes. The key contribution of the approach is a technique to simultaneously determine the structure of the tree and learn the classifiers for each node in the tree. This approach also allows fine grained control over the efficiency vs accuracy trade-off in designing a label tree, leading to more balanced trees. Experiments are performed on large scale image classification with 10184 classes and 9 million images. We demonstrate significant improvements in test accuracy and efficiency with less training time and more balanced trees compared to the previous state of the art by Bengio et al.


Agnostic Selective Classification

Neural Information Processing Systems

For a learning problem whose associated excess loss class is $(\beta,B)$-Bernstein, we show that it is theoretically possible to track the same classification performance of the best (unknown) hypothesis in our class, provided that we are free to abstain from prediction in some region of our choice. The (probabilistic) volume of this rejected region of the domain is shown to be diminishing at rate $O(B\theta (\sqrt{1/m}))^\beta)$, where $\theta$ is Hanneke's disagreement coefficient. The strategy achieving this performance has computational barriers because it requires empirical error minimization in an agnostic setting. Nevertheless, we heuristically approximate this strategy and develop a novel selective classification algorithm using constrained SVMs. We show empirically that the resulting algorithm consistently outperforms the traditional rejection mechanism based on distance from decision boundary.


Unsupervised learning models of primary cortical receptive fields and receptive field plasticity

Neural Information Processing Systems

The efficient coding hypothesis holds that neural receptive fields are adapted to the statistics of the environment, but is agnostic to the timescale of this adaptation, which occurs on both evolutionary and developmental timescales. In this work we focus on that component of adaptation which occurs during an organism's lifetime, and show that a number of unsupervised feature learning algorithms can account for features of normal receptive field properties across multiple primary sensory cortices. Furthermore, we show that the same algorithms account for altered receptive field properties in response to experimentally altered environmental statistics. Based on these modeling results we propose these models as phenomenological models of receptive field plasticity during an organism's lifetime. Finally, due to the success of the same models in multiple sensory areas, we suggest that these algorithms may provide a constructive realization of the theory, first proposed by Mountcastle (1978), that a qualitatively similar learning algorithm acts throughout primary sensory cortices.


A More Powerful Two-Sample Test in High Dimensions using Random Projection

Neural Information Processing Systems

We consider the hypothesis testing problem of detecting a shift between the means of two multivariate normal distributions in the high-dimensional setting, allowing for the data dimension p to exceed the sample size n. Our contribution is a new test statistic for the two-sample test of means that integrates a random projection with the classical Hotelling T squared statistic. Working within a high- dimensional framework that allows (p,n) to tend to infinity, we first derive an asymptotic power function for our test, and then provide sufficient conditions for it to achieve greater power than other state-of-the-art tests. Using ROC curves generated from simulated data, we demonstrate superior performance against competing tests in the parameter regimes anticipated by our theoretical results. Lastly, we illustrate an advantage of our procedure with comparisons on a high-dimensional gene expression dataset involving the discrimination of different types of cancer.


Inductive reasoning about chimeric creatures

Neural Information Processing Systems

Given one feature of a novel animal, humans readily make inferences about other features of the animal. For example, winged creatures often fly, and creatures that eat fish often live in the water. We explore the knowledge that supports these inferences and compare two approaches. The first approach proposes that humans rely on abstract representations of dependency relationships between features, and is formalized here as a graphical model. The second approach proposes that humans rely on specific knowledge of previously encountered animals, and is formalized here as a family of exemplar models. We evaluate these models using a task where participants reason about chimeras, or animals with pairs of features that have not previously been observed to co-occur. The results support the hypothesis that humans rely on explicit representations of relationships between features.


Learning Higher-Order Graph Structure with Features by Structure Penalty

Neural Information Processing Systems

In discrete undirected graphical models, the conditional independence of node labels Y is specified by the graph structure. We study the case where there is another input random vector X (e.g. observed features) such that the distribution P (Y | X) is determined by functions of X that characterize the (higher-order) interactions among the Y ’s. The main contribution of this paper is to learn the graph structure and the functions conditioned on X at the same time. We prove that discrete undirected graphical models with feature X are equivalent to mul- tivariate discrete models. The reparameterization of the potential functions in graphical models by conditional log odds ratios of the latter offers advantages in representation of the conditional independence structure. The functional spaces can be flexibly determined by kernels. Additionally, we impose a Structure Lasso (SLasso) penalty on groups of functions to learn the graph structure. These groups with overlaps are designed to enforce hierarchical function selection. In this way, we are able to shrink higher order interactions to obtain a sparse graph structure.