Goto

Collaborating Authors

 Country


Towards Population Scale Activity Recognition: A Framework for Handling Data Diversity

AAAI Conferences

The rising popularity of the sensor-equipped smartphone is changing the possible scale and scope of human activity inference. The diversity in user population seen in large user bases can overwhelm conventional one-size-fits-all classification approaches. Although personalized models are better able to handle population diversity, they often require increased effort from the end user during training and are computationally expensive. In this paper, we propose an activity classification framework that is scalable and can tractably handle an increasing number of users. Scalability is achieved by maintaining distinct groups of similar users during the training process, which makes it possible to account for the differences between users without resorting to training individualized classifiers. The proposed framework keeps user burden low by leveraging crowd-sourced data labels, where simple natural language processing techniques in combination with multi-instance learning are used to handle labeling errors introduced by low-commitment everyday users. Experiment results on a large public dataset demonstrate that the framework can cope with population diversity irrespective of population size.


Sparse Principal Component Analysis with Constraints

AAAI Conferences

The sparse principal component analysis is a variant of the classical principal component analysis, which finds linear combinations of a small number of features that maximize variance across data. In this paper we propose a methodology for adding two general types of feature grouping constraints into the original sparse PCA optimization procedure.We derive convex relaxations of the considered constraints, ensuring the convexity of the resulting optimization problem. Empirical evaluation on three real-world problems, one in process monitoring sensor networks and two in social networks, serves to illustrate the usefulness of the proposed methodology.


ET-LDA: Joint Topic Modeling for Aligning Events and their Twitter Feedback

AAAI Conferences

During broadcast events such as the Superbowl, the U.S. Presidential and Primary debates, etc., Twitter has become the de facto platform for crowds to share perspectives and commentaries about them. Given an event and an associated large-scale collection of tweets, there are two fundamental research problems that have been receiving increasing attention in recent years. One is to extract the topics covered by the event and the tweets; the other is to segment the event. So far these problems have been viewed separately and studied in isolation. In this work, we argue that these problems are in fact inter-dependent and should be addressed together. We develop a joint Bayesian model that performs topic modeling and event segmentation in one unified framework. We evaluate the proposed model both quantitatively and qualitatively on two large-scale tweet datasets associated with two events from different domains to show that it improves significantly over baseline models.


Weighted Clustering

AAAI Conferences

We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights. We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify algorithms accordingly.


Generalized Sampling and Variance in Counterfactual Regret Minimization

AAAI Conferences

In large extensive form games with imperfect information, Counterfactual Regret Minimization (CFR) is a popular, iterative algorithm for computing approximate Nash equilibria. While the base algorithm performs a full tree traversal on each iteration, Monte Carlo CFR (MCCFR) reduces the per iteration time cost by traversing just a sampled portion of the tree. On the other hand, MCCFR's sampled values introduce variance, and the effects of this variance were previously unknown. In this paper, we generalize MCCFR by considering any generic estimator of the sought values. We show that any choice of an estimator can be used to probabilistically minimize regret, provided the estimator is bounded and unbiased. In addition, we relate the variance of the estimator to the convergence rate of an algorithm that calculates regret directly from the estimator. We demonstrate the application of our analysis by defining a new bounded, unbiased estimator with empirically lower variance than MCCFR estimates. Finally, we use this estimator in a new sampling algorithm to compute approximate equilibria in Goofspiel, Bluff, and Texas hold'em poker. Under each of our selected sampling schemes, our new algorithm converges faster than MCCFR.


Goal Recognition with Markov Logic Networks for Player-Adaptive Games

AAAI Conferences

Goal recognition in digital games involves inferring players’ goals from observed sequences of low-level player actions. Goal recognition models support player-adaptive digital games, which dynamically augment game events in response to player choices for a range of applications, including entertainment, training, and education. However, digital games pose significant challenges for goal recognition, such as exploratory actions and ill-defined goals. This paper presents a goal recognition framework based on Markov logic networks (MLNs). The model’s parameters are directly learned from a corpus that was collected from player interactions with a non-linear educational game. An empirical evaluation demonstrates that the MLN goal recognition framework accurately predicts players’ goals in a game environment with exploratory actions and ill-defined goals.


Multinomial Relation Prediction in Social Data: A Dimension Reduction Approach

AAAI Conferences

The recent popularization of social web services has made them one of the primary uses of the World Wide Web. An important concept in social web services is social actions such as making connections and communicating with others and adding annotations to web resources. Predicting social actions would improve many fundamental web applications, such as recommendations and web searches. One remarkable characteristic of social actions is that they involve multiple and heterogeneous objects such as users, documents, keywords, and locations. However, the high-dimensional property of such multinomial relations poses one fundamental challenge, that is, predicting multinomial relations with only a limited amount of data. In this paper, we propose a new multinomial relation prediction method, which is robust to data sparsity. We transform each instance of a multinomial relation into a set of binomial relations between the objects and the multinomial relation of the involved objects. We then apply an extension of a low-dimensional embedding technique to these binomial relations, which results in a generalized eigenvalue problem guaranteeing global optimal solutions. We also incorporate attribute information as side information to address the “cold start” problem in multinomial relation prediction. Experiments with various real-world social web service datasets demonstrate that the proposed method is more robust against data sparseness as compared to several existing methods, which can only find sub-optimal solutions.


Learning the Kernel Matrix with Low-Rank Multiplicative Shaping

AAAI Conferences

Selecting the optimal kernel is an important and difficult challenge in applying kernel methods to pattern recognition. To address this challenge, multiple kernel learning (MKL) aims to learn a kernel from a combination of base kernel functions that perform optimally on the task. In this paper, we propose a novel MKL-themed approach to combine base kernels that are multiplicatively shaped with low-rank positive semidefinitve matrices. The proposed approach generalizes several popular MKL methods and thus provides more flexibility in modeling data. Computationally, we show how these low-rank matrices can be learned efficiently from data using convex quadratic programming. Empirical studies on several standard benchmark datasets for MKL show that the new approach often improves prediction accuracy statistically significantly over very competitive single kernel and other MKL methods.


Approximate Policy Iteration with Linear Action Models

AAAI Conferences

In this paper we consider the problem of finding a good policy given some batch data.We propose a new approach, LAM-API, that first builds a so-called linear action model (LAM) from the data and then uses the learned model and the collected data in approximate policy iteration (API) to find a good policy.A natural choice for the policy evaluation step in this algorithm is to use least-squares temporal difference (LSTD) learning algorithm.Empirical results on three benchmark problems show that this particular instance of LAM-API performs competitively as compared with LSPI, both from the point of view of data and computational efficiency.


Investigating Contingency Awareness Using Atari 2600 Games

AAAI Conferences

Contingency awareness is the recognition that some aspects of a future observation are under an agent's control while others are solely determined by the environment. This paper explores the idea of contingency awareness in reinforcement learning using the platform of Atari 2600 games. We introduce a technique for accurately identifying contingent regions and describe how to exploit this knowledge to generate improved features for value function approximation. We evaluate the performance of our techniques empirically, using 46 unseen, diverse, and challenging games for the Atari 2600 console. Our results suggest that contingency awareness is a generally useful concept for model-free reinforcement learning agents.