Goto

Collaborating Authors

 Country


Combining Classifiers Using Correspondence Analysis

Neural Information Processing Systems

The challenge of this problem is to decide which models to rely on for prediction and how much weight to give each. The goal of combining learned models is to obtain a more accurate prediction than can be obtained from any single source alone.


How to Dynamically Merge Markov Decision Processes

Neural Information Processing Systems

We are frequently called upon to perform multiple tasks that compete for our attention and resource. Often we know the optimal solution to each task in isolation; in this paper, we describe how this knowledge can be exploited to efficiently find good solutions for doing the tasks in parallel. We formulate this problem as that of dynamically merging multiple Markov decision processes (MDPs) into a composite MDP, and present a new theoretically-sound dynamic programming algorithm for finding an optimal policy for the composite MDP. We analyze various aspects of our algorithm and illustrate its use on a simple merging problem. Every day, we are faced with the problem of doing mUltiple tasks in parallel, each of which competes for our attention and resource. If we are running a job shop, we must decide which machines to allocate to which jobs, and in what order, so that no jobs miss their deadlines. If we are a mail delivery robot, we must find the intended recipients of the mail while simultaneously avoiding fixed obstacles (such as walls) and mobile obstacles (such as people), and still manage to keep ourselves sufficiently charged up. Frequently we know how to perform each task in isolation; this paper considers how we can take the information we have about the individual tasks and combine it to efficiently find an optimal solution for doing the entire set of tasks in parallel. More importantly, we describe a theoretically-sound algorithm for doing this merging dynamically; new tasks (such as a new job arrival at a job shop) can be assimilated online into the solution being found for the ongoing set of simultaneous tasks.


The Asymptotic Convergence-Rate of Q-learning

Neural Information Processing Systems

Q-Iearning is a popular reinforcement learning (RL) algorithm whose convergence is well demonstrated in the literature (Jaakkola et al., 1994; Tsitsiklis, 1994; Littman and Szepesvari, 1996; Szepesvari and Littman, 1996). Our aim in this paper is to provide an upper bound for the convergence rate of (lookup-table based) Q-Iearning algorithms. Although, this upper bound is not strict, computer experiments (to be presented elsewhere) and the form of the lemma underlying the proof indicate that the obtained upper bound can be made strict by a slightly more complicated definition for R. Our results extend to learning on aggregated states (see (Singh et al., 1995ยป and other related algorithms which admit a certain form of asynchronous stochastic approximation (see (Szepesv iri and Littman, 1996ยป. Present address: Associative Computing, Inc., Budapest, Konkoly Thege M. u. 29-33, HUNGARY-1121 The Asymptotic Convergence-Rate of Q-leaming


A Hippocampal Model of Recognition Memory

Neural Information Processing Systems

A rich body of data exists showing that recollection of specific information makes an important contribution to recognition memory, which is distinct from the contribution of familiarity, and is not adequately captured by existing unitary memory models. Furthennore, neuropsychological evidence indicates that recollection is sub served by the hippocampus. We present a model, based largely on known features of hippocampal anatomy and physiology, that accounts for the following key characteristics of recollection: 1) false recollection is rare (i.e., participants rarely claim to recollect having studied nonstudied items), and 2) increasing interference leads to less recollection but apparently does not compromise the quality of recollection (i.e., the extent to which recollected infonnation veridically reflects events that occurred at study).


Radial Basis Functions: A Bayesian Treatment

Neural Information Processing Systems

Bayesian methods have been successfully applied to regression and classification problems in multi-layer perceptrons. We present a novel application of Bayesian techniques to Radial Basis Function networks by developing a Gaussian approximation to the posterior distribution which, for fixed basis function widths, is analytic in the parameters. The setting of regularization constants by crossvalidation is wasteful as only a single optimal parameter estimate is retained. We treat this issue by assigning prior distributions to these constants, which are then adapted in light of the data under a simple re-estimation formula. 1 Introduction Radial Basis Function networks are popular regression and classification tools[lO]. For fixed basis function centers, RBFs are linear in their parameters and can therefore be trained with simple one shot linear algebra techniques[lO]. The use of unsupervised techniques to fix the basis function centers is, however, not generally optimal since setting the basis function centers using density estimation on the input data alone takes no account of the target values associated with that data. Ideally, therefore, we should include the target values in the training procedure[7, 3, 9]. Unfortunately, allowing centers to adapt to the training targets leads to the RBF being a nonlinear function of its parameters, and training becomes more problematic. Most methods that perform supervised training of RBF parameters minimize the ยทPresent address: SNN, University of Nijmegen, Geert Grooteplein 21, Nijmegen, The Netherlands.


Multi-modular Associative Memory

Neural Information Processing Systems

Motivated by the findings of modular structure in the association cortex, we study a multi-modular model of associative memory that can successfully store memory patterns with different levels of activity. We show that the segregation of synaptic conductances into intra-modular linear and inter-modular nonlinear ones considerably enhances the network's memory retrieval performance. Compared with the conventional, single-module associative memory network, the multi-modular network has two main advantages: It is less susceptible to damage to columnar input, and its response is consistent with the cognitive data pertaining to category specific impairment. 1 Introduction Cortical modules were observed in the somatosensory and visual cortices a few decades ago. These modules differ in their structure and functioning but are likely to be an elementary unit of processing in the mammalian cortex. Within each module the neurons are interconnected.


A 1, 000-Neuron System with One Million 7-bit Physical Interconnections

Neural Information Processing Systems

An asynchronous PDM (Pulse-Density-Modulating) digital neural network system has been developed in our laboratory. It consists of one thousand neurons that are physically interconnected via one million 7-bit synapses. It can solve one thousand simultaneous nonlinear first-order differential equations in a fully parallel and continuous fashion. The performance of this system was measured by a winner-take-all network with one thousand neurons. Although the magnitude of the input and network parameters were identical for each competing neuron, one of them won in 6 milliseconds.


A Simple and Fast Neural Network Approach to Stereovision

Neural Information Processing Systems

A neural network approach to stereovision is presented based on aliasing effects of simple disparity estimators and a fast coherencedetection scheme. Within a single network structure, a dense disparity map with an associated validation map and, additionally, the fused cyclopean view of the scene are available. The network operations are based on simple, biological plausible circuitry; the algorithm is fully parallel and non-iterative.


The Canonical Distortion Measure in Feature Space and 1-NN Classification

Neural Information Processing Systems

We prove that the Canonical Distortion Measure (CDM) [2, 3] is the optimal distance measure to use for I nearest-neighbour (l-NN) classification, and show that it reduces to squared Euclidean distance in feature space for function classes that can be expressed as linear combinations of a fixed set of features. PAClike bounds are given on the samplecomplexity required to learn the CDM. An experiment is presented in which a neural network CDM was learnt for a Japanese OCR environment and then used to do INN classification.


Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings

Neural Information Processing Systems

One of the current challenges to understanding neural information processing in biological systems is to decipher the "code" carried by large populations of neurons acting in parallel. We present an algorithm for automated discovery of stochastic firing patterns in large ensembles of neurons. The algorithm, from the "Helmholtz Machine" family, attempts to predict the observed spike patterns in the data. The model consists of an observable layer which is directly activated by the input spike patterns, and hidden units that are activated through ascending connections from the input layer. The hidden unit activity can be propagated down to the observable layer to create a prediction of the data pattern that produced it.