Goto

Collaborating Authors

 Country


Robust learning of low-dimensional dynamics from large neural ensembles

Neural Information Processing Systems

Recordings from large populations of neurons make it possible to search for hypothesized low-dimensional dynamics. Finding these dynamics requires models that take into account biophysical constraints and can be fit efficiently and robustly. Here, we present an approach to dimensionality reduction for neural data that is convex, does not make strong assumptions about dynamics, does not require averaging over many trials and is extensible to more complex statistical models that combine local and global influences. The results can be combined with spectral methods to learn dynamical systems models. The basic method can be seen as an extension of PCA to the exponential family using nuclear norm minimization. We evaluate the effectiveness of this method using an exact decomposition of the Bregman divergence that is analogous to variance explained for PCA. We show on model data that the parameters of latent linear dynamical systems can be recovered, and that even if the dynamics are not stationary we can still recover the true latent subspace. We also demonstrate an extension of nuclear norm minimization that can separate sparse local connections from global latent dynamics. Finally, we demonstrate improved prediction on real neural data from monkey motor cortex compared to fitting linear dynamical models without nuclear norm smoothing.


Universal models for binary spike patterns using centered Dirichlet processes

Neural Information Processing Systems

Probabilistic models for binary spike patterns provide a powerful tool for understanding the statistical dependencies in large-scale neural recordings. Maximum entropy (or maxent'') models, which seek to explain dependencies in terms of low-order interactions between neurons, have enjoyed remarkable success in modeling such patterns, particularly for small groups of neurons. However, these models are computationally intractable for large populations, and low-order maxent models have been shown to be inadequate for some datasets. To overcome these limitations, we propose a family of "universal'' models for binary spike patterns, where universality refers to the ability to model arbitrary distributions over all $2^m$ binary patterns. We construct universal models using a Dirichlet process centered on a well-behaved parametric base measure, which naturally combines the flexibility of a histogram and the parsimony of a parametric model. We derive computationally efficient inference methods using Bernoulli and cascade-logistic base measures, which scale tractably to large populations. We also establish a condition for equivalence between the cascade-logistic and the 2nd-order maxent or "Ising'' model, making cascade-logistic a reasonable choice for base measure in a universal model. We illustrate the performance of these models using neural data."


One-shot learning and big data with n=2

Neural Information Processing Systems

We model a one-shot learning" situation, where very few (scalar) observations $y_1,...,y_n$ are available. Associated with each observation $y_i$ is a very high-dimensional vector $x_i$, which provides context for $y_i$ and enables us to predict subsequent observations, given their own context. One of the salient features of our analysis is that the problems studied here are easier when the dimension of $x_i$ is large; in other words, prediction becomes easier when more context is provided. The proposed methodology is a variant of principal component regression (PCR). Our rigorous analysis sheds new light on PCR. For instance, we show that classical PCR estimators may be inconsistent in the specified setting, unless they are multiplied by a scalar $c > 1$; that is, unless the classical estimator is expanded. This expansion phenomenon appears to be somewhat novel and contrasts with shrinkage methods ($c < 1$), which are far more common in big data analyses. "


Variational Planning for Graph-based MDPs

Neural Information Processing Systems

Markov Decision Processes (MDPs) are extremely useful for modeling and solving sequential decision making problems. Graph-based MDPs provide a compact representation for MDPs with large numbers of random variables. However, the complexity of exactly solving a graph-based MDP usually grows exponentially in the number of variables, which limits their application. We present a new variational framework to describe and solve the planning problem of MDPs, and derive both exact and approximate planning algorithms. In particular, by exploiting the graph structure of graph-based MDPs, we propose a factored variational value iteration algorithm in which the value function is first approximated by the multiplication of local-scope value functions, then solved by minimizing a Kullback-Leibler (KL) divergence. The KL divergence is optimized using the belief propagation algorithm, with complexity exponential in only the cluster size of the graph. Experimental comparison on different models shows that our algorithm outperforms existing approximation algorithms at finding good policies.


Relevance Topic Model for Unstructured Social Group Activity Recognition

Neural Information Processing Systems

Unstructured social group activity recognition in web videos is a challenging task due to 1) the semantic gap between class labels and low-level visual features and 2) the lack of labeled training data. To tackle this problem, we propose a "relevance topic model" for jointly learning meaningful mid-level representations upon bag-of-words (BoW) video representations and a classifier with sparse weights. In our approach, sparse Bayesian learning is incorporated into an undirected topic model (i.e., Replicated Softmax) to discover topics which are relevant to video classes and suitable for prediction. Rectified linear units are utilized to increase the expressive power of topics so as to explain better video data containing complex contents and make variational inference tractable for the proposed model. An efficient variational EM algorithm is presented for model parameter estimation and inference. Experimental results on the Unstructured Social Activity Attribute dataset show that our model achieves state of the art performance and outperforms other supervised topic model in terms of classification accuracy, particularly in the case of a very small number of labeled training videos.


When in Doubt, SWAP: High-Dimensional Sparse Recovery from Correlated Measurements

Neural Information Processing Systems

We consider the problem of accurately estimating a high-dimensional sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that standard computationally tractable sparse recovery algorithms, such as the Lasso, OMP, and their various extensions, perform poorly when the measurement matrix contains highly correlated columns. We develop a simple greedy algorithm, called SWAP, that iteratively swaps variables until a desired loss function cannot be decreased any further. SWAP is surprisingly effective in handling measurement matrices with high correlations. We prove that SWAP can be easily used as a wrapper around standard sparse recovery algorithms for improved performance. We theoretically quantify the statistical guarantees of SWAP and complement our analysis with numerical results on synthetic and real data.


Generalized Denoising Auto-Encoders as Generative Models

Neural Information Processing Systems

Recent work has shown how denoising and contractive autoencoders implicitly capture the structure of the data generating density, in the case where the corruption noise is Gaussian, the reconstruction error is the squared error, and the data is continuous-valued. This has led to various proposals for sampling from this implicitly learned density function, using Langevin and Metropolis-Hastings MCMC. However, it remained unclear how to connect the training procedure of regularized auto-encoders to the implicit estimation of the underlying data generating distribution when the data are discrete, or using other forms of corruption process and reconstruction errors. Another issue is the mathematical justification which is only valid in the limit of small corruption noise. We propose here a different attack on the problem, which deals with all these issues: arbitrary (but noisy enough) corruption, arbitrary reconstruction loss (seen as a log-likelihood), handling both discrete and continuous-valued variables, and removing the bias due to non-infinitesimal corruption noise (or non-infinitesimal contractive penalty).


Context-sensitive active sensing in humans

Neural Information Processing Systems

Humans and animals readily utilize active sensing, or the use of self-motion, to focus sensory and cognitive resources on the behaviorally most relevant stimuli and events in the environment. Understanding the computational basis of natural active sensing is important both for advancing brain sciences and for developing more powerful artificial systems. Recently, a goal-directed, context-sensitive, Bayesian control strategy for active sensing, termed C-DAC (Context-Dependent Active Controller), was proposed (Ahmad & Yu, 2013). In contrast to previously proposed algorithms for human active vision, which tend to optimize abstract statistical objectives and therefore cannot adapt to changing behavioral context or task goals, C-DAC directly minimizes behavioral costs and thus, automatically adapts itself to different task conditions. However, C-DAC is limited as a model of human active sensing, given its computational/representational requirements, especially for more complex, real-world situations. Here, we propose a myopic approximation to C-DAC, which also takes behavioral costs into account, but achieves a significant reduction in complexity by looking only one step ahead. We also present data from a human active visual search experiment, and compare the performance of the various models against human behavior. We find that C-DAC and its myopic variant both achieve better fit to human data than Infomax (Butko & Movellan, 2010), which maximizes expected cumulative future information gain. In summary, this work provides novel experimental results that differentiate theoretical models for human active sensing, as well as a novel active sensing algorithm that retains the context-sensitivity of the optimal controller while achieving significant computational savings.


Auditing: Active Learning with Outcome-Dependent Query Costs

Neural Information Processing Systems

We propose a learning setting in which unlabeled data is free, and the cost of a label depends on its value, which is not known in advance. We study binary classification in an extreme case, where the algorithm only pays for negative labels. Our motivation are applications such as fraud detection, in which investigating an honest transaction should be avoided if possible. We term the setting auditing, and consider the auditing complexity of an algorithm: The number of negative points it labels to learn a hypothesis with low relative error. We design auditing algorithms for thresholds on the line and axis-aligned rectangles, and show that with these algorithms, the auditing complexity can be significantly lower than the active label complexity. We discuss a general approach for auditing for a general hypothesis class, and describe several interesting directions for future work.


Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs

Neural Information Processing Systems

The idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to write short, simple probabilistic graphics programs that define flexible generative models and to automatically invert them to interpret real-world images. Generative probabilistic graphics programs consist of a stochastic scene generator, a renderer based on graphics software, a stochastic likelihood model linking the renderer's output and the data, and latent variables that adjust the fidelity of the renderer and the tolerance of the likelihood model. Representations and algorithms from computer graphics, originally designed to produce high-quality images, are instead used as the deterministic backbone for highly approximate and stochastic generative models. This formulation combines probabilistic programming, computer graphics, and approximate Bayesian computation, and depends only on general-purpose, automatic inference techniques. We describe two applications: reading sequences of degraded and adversarially obscured alphanumeric characters, and inferring 3D road models from vehicle-mounted camera images. Each of the probabilistic graphics programs we present relies on under 20 lines of probabilistic code, and supports accurate, approximately Bayesian inferences about ambiguous real-world images.