Goto

Collaborating Authors

 Country


Is Shafer General Bayes?

arXiv.org Artificial Intelligence

This paper examines the relationship between Shafer's belief functions and convex sets of probability distributions. Kyburg's (1986) result showed that belief function models form a subset of the class of closed convex probability distributions. This paper emphasizes the importance of Kyburg's result by looking at simple examples involving Bernoulli trials. Furthermore, it is shown that many convex sets of probability distributions generate the same belief function in the sense that they support the same lower and upper values. This has implications for a decision theoretic extension. Dempster's rule of combination is also compared with Bayes' rule of conditioning.


Comparisons of Reasoning Mechanisms for Computer Vision

arXiv.org Artificial Intelligence

An evidential reasoning mechanism based on the Dempster-Shafer theory of evidence is introduced. Its performance in real-world image analysis is compared with other mechanisms based on the Bayesian formalism and a simple weight combination method.


Evidence Absorption and Propagation through Evidence Reversals

arXiv.org Artificial Intelligence

The arc reversal/node reduction approach to probabilistic inference is extended to include the case of instantiated evidence by an operation called "evidence reversal." This not only provides a technique for computing posterior joint distributions on general belief networks, but also provides insight into the methods of Pearl [1986b] and Lauritzen and Spiegelhalter [1988]. Although it is well understood that the latter two algorithms are closely related, in fact all three algorithms are identical whenever the belief network is a forest.


On the Combinality of Evidence in the Dempster-Shafer Theory

arXiv.org Artificial Intelligence

In the current versions of the Dempster-Shafer theory, the only essential restriction on the validity of the rule of combination is that the sources of evidence must be statistically independent. Under this assumption, it is permissible to apply the Dempster-Shafer rule to two or mere distinct probability distributions.


Plan Recognition in Stories and in Life

arXiv.org Artificial Intelligence

Plan recognition does not work the same way in stories and in "real life" (people tend to jump to conclusions more in stories). We present a theory of this, for the particular case of how objects in stories (or in life) influence plan recognition decisions. We provide a Bayesian network formalization of a simple first-order theory of plans, and show how a particular network parameter seems to govern the difference between "life-like" and "story-like" response. We then show why this parameter would be influenced (in the desired way) by a model of speaker (or author) topic selection which assumes that facts in stories are typically "relevant".


A Measure-Free Approach to Conditioning

arXiv.org Artificial Intelligence

In an earlier paper, a new theory of measurefree "conditional" objects was presented. In this paper, emphasis is placed upon the motivation of the theory. The central part of this motivation is established through an example involving a knowledge-based system. In order to evaluate combination of evidence for this system, using observed data, auxiliary at tribute and diagnosis variables, and inference rules connecting them, one must first choose an appropriate algebraic logic description pair (ALDP): a formal language or syntax followed by a compatible logic or semantic evaluation (or model). Three common choices- for this highly non-unique choice - are briefly discussed, the logics being Classical Logic, Fuzzy Logic, and Probability Logic. In all three,the key operator representing implication for the inference rules is interpreted as the often-used disjunction of a negation (b => a) = (b'v a), for any events a,b. However, another reasonable interpretation of the implication operator is through the familiar form of probabilistic conditioning. But, it can be shown - quite surprisingly - that the ALDP corresponding to Probability Logic cannot be used as a rigorous basis for this interpretation! To fill this gap, a new ALDP is constructed consisting of "conditional objects", extending ordinary Probability Logic, and compatible with the desired conditional probability interpretation of inference rules. It is shown also that this choice of ALDP leads to feasible computations for the combination of evidence evaluation in the example. In addition, a number of basic properties of conditional objects and the resulting Conditional Probability Logic are given, including a characterization property and a developed calculus of relations.


Making Decisions with Belief Functions

arXiv.org Artificial Intelligence

A primary motivation for reasoning under uncertainty is to derive decisions in the face of inconclusive evidence. However, Shafer's theory of belief functions, which explicitly represents the underconstrained nature of many reasoning problems, lacks a formal procedure for making decisions. Clearly, when sufficient information is not available, no theory can prescribe actions without making additional assumptions. Faced with this situation, some assumption must be made if a clearly superior choice is to emerge. In this paper we offer a probabilistic interpretation of a simple assumption that disambiguates decision problems represented with belief functions. We prove that it yields expected values identical to those obtained by a probabilistic analysis that makes the same assumption. In addition, we show how the decision analysis methodology frequently employed in probabilistic reasoning can be extended for use with belief functions.


Convergent Deduction for Probabilistic Logic

arXiv.org Artificial Intelligence

This paper discusses the semantics and proof theory of Nilsson's probabilistic logic, outlining both the benefits of its well-defined model theory and the drawbacks of its proof theory. Within Nilsson's semantic framework, we derive a set of inference rules which are provably sound. The resulting proof system, in contrast to Nilsson's approach, has the important feature of convergence - that is, the inference process proceeds by computing increasingly narrow probability intervals which converge from above and below on the smallest entailed probability interval. Thus the procedure can be stopped at any time to yield partial information concerning the smallest entailed interval.


Knowledge and Uncertainty

arXiv.org Artificial Intelligence

One purpose -- quite a few thinkers would say the main purpose -- of seeking knowledge about the world is to enhance our ability to make good decisions. An item of knowledge that can make no conceivable difference with regard to anything we might do would strike many as frivolous. Whether or not we want to be philosophical pragmatists in this strong sense with regard to everything we might want to enquire about, it seems a perfectly appropriate attitude to adopt toward artificial knowledge systems. If is granted that we are ultimately concerned with decisions, then some constraints are imposed on our measures of uncertainty at the level of decision making. If our measure of uncertainty is real-valued, then it isn't hard to show that it must satisfy the classical probability axioms. For example, if an act has a real-valued utility U(E) if the event E obtains, and the same real-valued utility if the denial of E obtains, so that U(E) = U(-E), then the expected utility of that act must be U(E), and that must be the same as the uncertainty-weighted average of the returns of the act, p-U(E) + q-U('E), where p and q represent the uncertainty of E and-E respectively. But then we must have p + q = 1.


Bayesian Prediction for Artificial Intelligence

arXiv.org Artificial Intelligence

This paper shows that the common method used for making predictions under uncertainty in A1 and science is in error. This method is to use currently available data to select the best model from a given class of models-this process is called abduction-and then to use this model to make predictions about future data. The correct method requires averaging over all the models to make a prediction-we call this method transduction. Using transduction, an AI system will not give misleading results when basing predictions on small amounts of data, when no model is clearly best. For common classes of models we show that the optimal solution can be given in closed form.