Goto

Collaborating Authors

 Country


Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions

arXiv.org Machine Learning

We apply the spike-and-slab Restricted Boltzmann Machine (ssRBM) to texture modeling. The ssRBM with tiled-convolution weight sharing (TssRBM) achieves or surpasses the state-of-the-art on texture synthesis and inpainting by parametric models. We also develop a novel RBM model with a spike-and-slab visible layer and binary variables in the hidden layer. This model is designed to be stacked on top of the TssRBM. We show the resulting deep belief network (DBN) is a powerful generative model that improves on single-layer models and is capable of modeling not only single high-resolution and challenging textures but also multiple textures.


New Hoopoe Heuristic Optimization

arXiv.org Artificial Intelligence

Most optimization problems in real life applications are often highly nonlinear. Local optimization algorithms do not give the desired performance. So, only global optimization algorithms should be used to obtain optimal solutions. This paper introduces a new nature-inspired metaheuristic optimization algorithm, called Hoopoe Heuristic (HH). In this paper, we will study HH and validate it against some test functions. Investigations show that it is very promising and could be seen as an optimization of the powerful algorithm of cuckoo search. Finally, we discuss the features of Hoopoe Heuristic and propose topics for further studies.


Revision of Defeasible Logic Preferences

arXiv.org Artificial Intelligence

There are several contexts of non-monotonic reasoning where a priority between rules is established whose purpose is preventing conflicts. One formalism that has been widely employed for non-monotonic reasoning is the sceptical one known as Defeasible Logic. In Defeasible Logic the tool used for conflict resolution is a preference relation between rules, that establishes the priority among them. In this paper we investigate how to modify such a preference relation in a defeasible logic theory in order to change the conclusions of the theory itself. We argue that the approach we adopt is applicable to legal reasoning where users, in general, cannot change facts or rules, but can propose their preferences about the relative strength of the rules. We provide a comprehensive study of the possible combinatorial cases and we identify and analyse the cases where the revision process is successful. After this analysis, we identify three revision/update operators and study them against the AGM postulates for belief revision operators, to discover that only a part of these postulates are satisfied by the three operators.


Modeling problems of identity in Little Red Riding Hood

arXiv.org Artificial Intelligence

This paper argues that the problem of identity is a critical challenge in agents which are able to reason about stories. The Xapagy architecture has been built from scratch to perform narrative reasoning and relies on a somewhat unusual approach to represent instances and identity. We illustrate the approach by a representation of the story of Little Red Riding Hood in the architecture, with a focus on the problem of identity raised by the narrative.


Shadows and Headless Shadows: an Autobiographical Approach to Narrative Reasoning

arXiv.org Artificial Intelligence

The Xapagy architecture is a story-oriented cognitive system which relies exclusively on the autobiographical memory implemented as a raw collection of events. Reasoning is performed by shadowing current events with events from the autobiography. The shadows are then extrapolated into headless shadows (HLSs). In a story following mood, HLSs can be used to track the level of surprise of the agent, to infer hidden actions or relations between the participants, and to summarize ongoing events. In recall mood, the HLSs can be used to create new stories ranging from exact recall to free-form confabulation.


Obesity Heuristic, New Way On Artificial Immune Systems

arXiv.org Artificial Intelligence

There is a need for new metaphors from immunology to flourish the application areas of Artificial Immune Systems. A metaheuristic called Obesity Heuristic derived from advances in obesity treatment is proposed. The main forces of the algorithm are the generation omega-6 and omega-3 fatty acids. The algorithm works with Just-In-Time philosophy; by starting only when desired. A case study of data cleaning is provided. With experiments conducted on standard tables, results show that Obesity Heuristic outperforms other algorithms, with 100% recall. This is a great improvement over other algorithms


Shadows and headless shadows: a worlds-based, autobiographical approach to reasoning

arXiv.org Artificial Intelligence

Many cognitive systems deploy multiple, closed, individually consistent models which can represent interpretations of the present state of the world, moments in the past, possible futures or alternate versions of reality. While they appear under different names, these structures can be grouped under the general term of worlds. The Xapagy architecture is a story-oriented cognitive system which relies exclusively on the autobiographical memory implemented as a raw collection of events organized into world-type structures called {\em scenes}. The system performs reasoning by shadowing current events with events from the autobiography. The shadows are then extrapolated into headless shadows corresponding to predictions, hidden events or inferred relations.


A hybrid cross entropy algorithm for solving dynamic transit network design problem

arXiv.org Artificial Intelligence

This paper proposes a hybrid multiagent learning algorithm for solving the dynamic simulation-based bilevel network design problem. The objective is to determine the op-timal frequency of a multimodal transit network, which minimizes total users' travel cost and operation cost of transit lines. The problem is formulated as a bilevel programming problem with equilibrium constraints describing non-cooperative Nash equilibrium in a dynamic simulation-based transit assignment context. A hybrid algorithm combing the cross entropy multiagent learning algorithm and Hooke-Jeeves algorithm is proposed. Computational results are provided on the Sioux Falls network to illustrate the perform-ance of the proposed algorithm.


On pattern recovery of the fused Lasso

arXiv.org Machine Learning

We study the property of the Fused Lasso Signal Approximator (FLSA) for estimating a blocky signal sequence with additive noise. We transform the FLSA to an ordinary Lasso problem. By studying the property of the design matrix in the transformed Lasso problem, we find that the irrepresentable condition might not hold, in which case we show that the FLSA might not be able to recover the signal pattern. We then apply the newly developed preconditioning method -- Puffer Transformation [Jia and Rohe, 2012] on the transformed Lasso problem. We call the new method the preconditioned fused Lasso and we give non-asymptotic results for this method. Results show that when the signal jump strength (signal difference between two neighboring groups) is big and the noise level is small, our preconditioned fused Lasso estimator gives the correct pattern with high probability. Theoretical results give insight on what controls the signal pattern recovery ability -- it is the noise level {instead of} the length of the sequence. Simulations confirm our theorems and show significant improvement of the preconditioned fused Lasso estimator over the vanilla FLSA.


A Traveling Salesman Learns Bayesian Networks

arXiv.org Machine Learning

Structure learning of Bayesian networks is an important problem that arises in numerous machine learning applications. In this work, we present a novel approach for learning the structure of Bayesian networks using the solution of an appropriately constructed traveling salesman problem. In our approach, one computes an optimal ordering (partially ordered set) of random variables using methods for the traveling salesman problem. This ordering significantly reduces the search space for the subsequent greedy optimization that computes the final structure of the Bayesian network. We demonstrate our approach of learning Bayesian networks on real world census and weather datasets. In both cases, we demonstrate that the approach very accurately captures dependencies between random variables. We check the accuracy of the predictions based on independent studies in both application domains.