Goto

Collaborating Authors

 Country


A hybrid cross entropy algorithm for solving dynamic transit network design problem

arXiv.org Artificial Intelligence

This paper proposes a hybrid multiagent learning algorithm for solving the dynamic simulation-based bilevel network design problem. The objective is to determine the op-timal frequency of a multimodal transit network, which minimizes total users' travel cost and operation cost of transit lines. The problem is formulated as a bilevel programming problem with equilibrium constraints describing non-cooperative Nash equilibrium in a dynamic simulation-based transit assignment context. A hybrid algorithm combing the cross entropy multiagent learning algorithm and Hooke-Jeeves algorithm is proposed. Computational results are provided on the Sioux Falls network to illustrate the perform-ance of the proposed algorithm.


On pattern recovery of the fused Lasso

arXiv.org Machine Learning

We study the property of the Fused Lasso Signal Approximator (FLSA) for estimating a blocky signal sequence with additive noise. We transform the FLSA to an ordinary Lasso problem. By studying the property of the design matrix in the transformed Lasso problem, we find that the irrepresentable condition might not hold, in which case we show that the FLSA might not be able to recover the signal pattern. We then apply the newly developed preconditioning method -- Puffer Transformation [Jia and Rohe, 2012] on the transformed Lasso problem. We call the new method the preconditioned fused Lasso and we give non-asymptotic results for this method. Results show that when the signal jump strength (signal difference between two neighboring groups) is big and the noise level is small, our preconditioned fused Lasso estimator gives the correct pattern with high probability. Theoretical results give insight on what controls the signal pattern recovery ability -- it is the noise level {instead of} the length of the sequence. Simulations confirm our theorems and show significant improvement of the preconditioned fused Lasso estimator over the vanilla FLSA.


A Traveling Salesman Learns Bayesian Networks

arXiv.org Machine Learning

Structure learning of Bayesian networks is an important problem that arises in numerous machine learning applications. In this work, we present a novel approach for learning the structure of Bayesian networks using the solution of an appropriately constructed traveling salesman problem. In our approach, one computes an optimal ordering (partially ordered set) of random variables using methods for the traveling salesman problem. This ordering significantly reduces the search space for the subsequent greedy optimization that computes the final structure of the Bayesian network. We demonstrate our approach of learning Bayesian networks on real world census and weather datasets. In both cases, we demonstrate that the approach very accurately captures dependencies between random variables. We check the accuracy of the predictions based on independent studies in both application domains.


A unifying representation for a class of dependent random measures

arXiv.org Machine Learning

We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance.


Domain Adaptations for Computer Vision Applications

arXiv.org Machine Learning

A basic assumption of statistical learning theory is that train and test data are drawn from the same underlying distribution. Unfortunately, this assumption doesn't hold in many applications. Instead, ample labeled data might exist in a particular `source' domain while inference is needed in another, `target' domain. Domain adaptation methods leverage labeled data from both domains to improve classification on unseen data in the target domain. In this work we survey domain transfer learning methods for various application domains with focus on recent work in Computer Vision.


A survey of non-exchangeable priors for Bayesian nonparametric models

arXiv.org Machine Learning

Dependent nonparametric processes extend distributions over measures, such as the Dirichlet process and the beta process, to give distributions over collections of measures, typically indexed by values in some covariate space. Such models are appropriate priors when exchangeability assumptions do not hold, and instead we want our model to vary fluidly with some set of covariates. Since the concept of dependent nonparametric processes was formalized by MacEachern [1], there have been a number of models proposed and used in the statistics and machine learning literatures. Many of these models exhibit underlying similarities, an understanding of which, we hope, will help in selecting an appropriate prior, developing new models, and leveraging inference techniques.


Random Input Sampling for Complex Models Using Markov Chain Monte Carlo

arXiv.org Machine Learning

Many random processes can be simulated as the output of a deterministic model accepting random inputs. Such a model usually describes a complex mathematical or physical stochastic system and the randomness is introduced in the input variables of the model. When the statistics of the output event are known, these input variables have to be chosen in a specific way for the output to have the prescribed statistics. Because the probability distribution of the input random variables is not directly known but dictated implicitly by the statistics of the output random variables, this problem is usually intractable for classical sampling methods. Based on Markov Chain Monte Carlo we propose a novel method to sample random inputs to such models by introducing a modification to the standard Metropolis-Hastings algorithm. As an example we consider a system described by a stochastic differential equation (sde) and demonstrate how sample paths of a random process satisfying this sde can be generated with our technique.


Gliders2012: Development and Competition Results

arXiv.org Artificial Intelligence

The RoboCup 2D Simulation League incorporates several challenging features, setting a benchmark for Artificial Intelligence (AI). In this paper we describe some of the ideas and tools around the development of our team, Gliders2012. In our description, we focus on the evaluation function as one of our central mechanisms for action selection. We also point to a new framework for watching log files in a web browser that we release for use and further development by the RoboCup community. Finally, we also summarize results of the group and final matches we played during RoboCup 2012, with Gliders2012 finishing 4th out of 19 teams.


A New Similarity Measure for Taxonomy Based on Edge Counting

arXiv.org Artificial Intelligence

This paper introduces a new similarity measure based on edge counting in a taxonomy like WorldNet or Ontology. Measurement of similarity between text segments or concepts is very useful for many applications like information retrieval, ontology matching, text mining, and question answering and so on. Several measures have been developed for measuring similarity between two concepts: out of these we see that the measure given by Wu and Palmer [1] is simple, and gives good performance. Our measure is based on their measure but strengthens it. Wu and Palmer [1] measure has a disadvantage that it does not consider how far the concepts are semantically. In our measure we include the shortest path between the concepts and the depth of whole taxonomy together with the distances used in Wu and Palmer [1]. Also the measure has following disadvantage i.e. in some situations, the similarity of two elements of an IS-A ontology contained in the neighborhood exceeds the similarity value of two elements contained in the same hierarchy. Our measure introduces a penalization factor for this case based upon shortest length between the concepts and depth of whole taxonomy.


Bayesian nonparametric models for ranked data

arXiv.org Machine Learning

We develop a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a gamma process. We derive a posterior characterization and a simple and effective Gibbs sampler for posterior simulation. We develop a time-varying extension of our model, and apply it to the New York Times lists of weekly bestselling books.