Goto

Collaborating Authors

 Country


Budgeted Prediction with Expert Advice

AAAI Conferences

We consider a budgeted variant of the problem of learning from expert advice with N experts. Each queried expert incurs a cost and there is a given budget B on the total cost of experts that can be queried in any prediction round. We provide an online learning algorithm for this setting with regret after T prediction rounds bounded by O(sqrt(C log(N)T/B)), where C is the total cost of all experts. We complement this upper bound with a nearly matching lower bound Omega(sqrt(CT/B)) on the regret of any algorithm for this problem. We also provide experimental validation of our algorithm.


CrowdMR: Integrating Crowdsourcing with MapReduce for AI-Hard Problems

AAAI Conferences

Large-scale distributed computing has made available the resources necessary to solve "AI-hard" problems. As a result, it becomes feasible to automate the processing of such problems, but accuracy is not very high due to the conceptual difficulty of these problems. In this paper, we integrated crowdsourcing with MapReduce to provide a scalable innovative human-machine solution to AI-hard problems, which is called CrowdMR. In CrowdMR, the majority of problem instances are automatically processed by machine while the troublesome instances are redirected to human via crowdsourcing. The results returned from crowdsourcing are validated in the form of CAPTCHA (Completely Automated Public Turing test to Tell Computers and Humans Apart) before adding to the output. An incremental scheduling method was brought forward to combine the results from machine and human in a "pay-as-you-go" way.


Online Bayesian Models for Personal Analytics in Social Media

AAAI Conferences

Latent author attribute prediction in social media provides a novel set of conditions for the construction of supervised classification models. With individual authors as training and test instances, their associated content ("features") are made available incrementally over time, as they converse over discussion forums. We propose various approaches to handling this dynamic data, from traditional batch training and testing, to incremental bootstrapping, and then active learning via crowdsourcing. Our underlying model relies on an intuitive application of Bayes rule, which should be easy to adopt by the community, thus allowing for a general shift towards online modeling for social media.


Scalable Agent Modeling for Large Multiagent Systems

AAAI Conferences

In a heterogeneous multiagent system it can be useful to have knowledge about the different types of agents in the system. Agent modeling develops agent models based on interactions between agents, then predicts agent actions. This approach is effective in small domains but does not scale well. We develop an approach where an agent can learn using an abstract model identification or stereotype rather than an explicit and unique model for each agent. We associate each agent with a stereotype and learn a policy incorporating this knowledge. The benefits of this approach are that it is simple, scalable, and degrades gracefully with misidentification.


Self-Paced Curriculum Learning

AAAI Conferences

Curriculum learning (CL) or self-paced learning (SPL) represents a recently proposed learning regime inspired by the learning process of humans and animals that gradually proceeds from easy to more complex samples in training. The two methods share a similar conceptual learning paradigm, but differ in specific learning schemes. In CL, the curriculum is predetermined by prior knowledge, and remain fixed thereafter. Therefore, this type of method heavily relies on the quality of prior knowledge while ignoring feedback about the learner. In SPL, the curriculum is dynamically determined to adjust to the learning pace of the leaner. However, SPL is unable to deal with prior knowledge, rendering it prone to overfitting. In this paper, we discover the missing link between CL and SPL, and propose a unified framework named self-paced curriculum leaning (SPCL). SPCL is formulated as a concise optimization problem that takes into account both prior knowledge known before training and the learning progress during training. In comparison to human education, SPCL is analogous to "instructor-student-collaborative" learning mode, as opposed to "instructor-driven" in CL or "student-driven" in SPL. Empirically, we show that the advantage of SPCL on two tasks.


Logic Programming in Assumption-Based Argumentation Revisited - Semantics and Graphical Representation

AAAI Conferences

Logic Programming and Argumentation Theory have been existing side by side as two separate, yet related, techniques in the field of Knowledge Representation and Reasoningfor many years.When Assumption-Based Argumentation (ABA) was first introduced in the nineties,the authors showed how a logic program can be encoded in an ABA framework andproved that the stable semantics of a logic program corresponds to the stable extension semantics of the ABA framework encoding this logic program.We revisit this initial work by provingthat the 3-valued stable semantics of a logic program coincides with the complete semantics of the encoding ABA framework,and that the L-stable semantics of this logic program coincides with the semi-stable semantics of the encoding ABA framework.Furthermore, we show how to graphically represent the structure of a logic program encoded in an ABA frameworkand that not only logic programming and ABA semanticsbut also Abstract Argumentation semantics can be easily applied to a logic program using these graphical representations.


Grounded Fixpoints

AAAI Conferences

Algebraical fixpoint theory is an invaluable instrument for studying semantics of logics. For example, all major semantics of logic programming, autoepistemic logic, default logic and more recently, abstract argumentation have been shown to be induced by the different types of fixpoints defined in approximation fixpoint theory (AFT). In this paper, we add a new type of fixpoint to AFT: a grounded fixpoint of lattice operator O : L โ†’ L is defined as a lattice element x โˆˆ L such that O(x) = x and for all v โˆˆ L such that O(v โˆง x) โ‰ค v, it holds that x โ‰ค v. On the algebraical level, we show that all grounded fixpoints are minimal fixpoints approximated by the well-founded fixpoint and that all stable fixpoints are grounded. On the logical level, grounded fixpoints provide a new mathematically simple and compact type of semantics for any logic with a (possibly non-monotone) semantic operator. We explain the intuition underlying this semantics in the context of logic programming by pointing out that grounded fixpoints of the immediate consequence operator are interpretations that have no non-trivial unfounded sets. We also analyse the complexity of the induced semantics. Summarised, grounded fixpoint semantics is a new, probably the simplest and most compact, element in the family of semantics that capture basic intuitions and principles of various non-monotonic logics. ย 


What Is the Longest River in the USA? Semantic Parsing for Aggregation Questions

AAAI Conferences

Answering natural language questions against structured knowledge bases (KB) has been attracting increasing attention in both IR and NLP communities. The task involves two main challenges: recognizing the questions' meanings, which are then grounded to a given KB. Targeting simple factoid questions, many existing open domain semantic parsers jointly solve these two subtasks, but are usually expensive in complexity and resources.In this paper, we propose a simple pipeline framework to efficiently answer more complicated questions, especially those implying aggregation operations, e.g., argmax, argmin.We first develop a transition-based parsing model to recognize the KB-independent meaning representation of the user's intention inherent in the question. Secondly, we apply a probabilistic model to map the meaning representation, including those aggregation functions, to a structured query.The experimental results showed that our method can better understand aggregation questions, outperforming the state-of-the-art methods on the Free917 dataset while still maintaining promising performance on a more challenging dataset, WebQuestions, without extra training.


A New Computational Intelligence Model for Long-Term Prediction of Solar and Geomagnetic Activity

AAAI Conferences

This paper briefly describes how the neural structure of fear conditioning has inspired to develop a computational intelligence model that is referred to as the brain emotional learning-inspired model (BELIM). The model is applied to predict long step ahead of solar activity and geomagnetic storms.


Deep Modeling Complex Couplings within Financial Markets

AAAI Conferences

The global financial crisis occurred in 2008 and its contagion to other regions, as well as the long-lasting impact on different markets, show that it is increasingly important to understand the complicated coupling relationships across financial markets. This is indeed very difficult as complex hidden coupling relationships exist between different financial markets in various countries, which are very hard to model. The couplings involve interactions between homogeneous markets from various countries (we call intra-market coupling), interactions between heterogeneous markets (inter-market coupling) and interactions between current and past market behaviors (temporal coupling). Very limited work has been done towards modeling such complex couplings, whereas some existing methods predict market movement by simply aggregating indicators from various markets but ignoring the inbuilt couplings. As a result, these methods are highly sensitive to observations, and may often fail when financial indicators change slightly. In this paper, a coupled deep belief network is designed to accommodate the above three types of couplings across financial markets. With a deep-architecture model to capture the high-level coupled features, the proposed approach can infer market trends. Experimental results on data of stock and currency markets from three countries show that our approach outperforms other baselines, from both technical and business perspectives.