Goto

Collaborating Authors

 Country


Efficient Kernel Discriminant Analysis via QR Decomposition

Neural Information Processing Systems

Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications such as face recognition. Recently, a novel LDA algorithm based on QR Decomposition, namely LDA/QR, has been proposed, which is competitive in terms of classification accuracy with other LDA algorithms, but it has much lower costs in time and space. However, LDA/QR is based on linear projection, which may not be suitable for data with nonlinear structure. This paper first proposes an algorithm called KDA/QR, which extends the LDA/QR algorithm to deal with nonlinear data by using the kernel operator. Then an efficient approximation of KDA/QR called AKDA/QR is proposed. Experiments on face image data show that the classification accuracy of both KDA/QR and AKDA/QR are competitive with Generalized Discriminant Analysis (GDA), a general kernel discriminant analysis algorithm, while AKDA/QR has much lower time and space costs.


Instance-Based Relevance Feedback for Image Retrieval

Neural Information Processing Systems

High retrieval precision in content-based image retrieval can be attained by adopting relevance feedback mechanisms. These mechanisms require that the user judges the quality of the results of the query by marking all the retrieved images as being either relevant or not. Then, the search engine exploits this information to adapt the search to better meet user's needs. At present, the vast majority of proposed relevance feedback mechanisms are formulated in terms of search model that has to be optimized. Such an optimization involves the modification of some search parameters so that the nearest neighbor of the query vector contains the largest number of relevant images.


Multiple Relational Embedding

Neural Information Processing Systems

We describe a way of using multiple different types of similarity relationship to learn a low-dimensional embedding of a dataset. Our method chooses different, possibly overlapping representations of similarity by individually reweighting the dimensions of a common underlying latent space. When applied to a single similarity relation that is based on Euclidean distances between the input data points, the method reduces to simple dimensionality reduction. If additional information is available about the dataset or about subsets of it, we can use this information to clean up or otherwise improve the embedding. We demonstrate the potential usefulness of this form of semi-supervised dimensionality reduction on some simple examples.


Surface Reconstruction using Learned Shape Models

Neural Information Processing Systems

We consider the problem of geometrical surface reconstruction from one or several images using learned shape models. While humans can effortlessly retrieve 3D shape information, this inverse problem has turned out to be difficult to perform automatically. We introduce a framework based on level set surface reconstruction and shape models for achieving this goal. Through this merging, we obtain an efficient and robust method for reconstructing surfaces of an object category of interest. The shape model includes surface cues such as point, curve and silhouette features. Based on ideas from Active Shape Models, we show how both the geometry and the appearance of these features can be modelled consistently in a multi-view context. The complete surface is obtained by evolving a level set driven by a PDE, which tries to fit the surface to the inferred 3D features. In addition, an a priori 3D surface model is used to regularize the solution, in particular, where surface features are sparse. Experiments are demonstrated on a database of real face images.


Learning Syntactic Patterns for Automatic Hypernym Discovery

Neural Information Processing Systems

Semantic taxonomies such as WordNet provide a rich source of knowledge for natural language processing applications, but are expensive to build, maintain, and extend. Motivated by the problem of automatically constructing and extending such taxonomies, in this paper we present a new algorithm for automatically learning hypernym (isa) relations from text. Our method generalizes earlier work that had relied on using small numbers of handcrafted regular expression patterns to identify hypernym pairs. Using "dependency path" features extracted from parse trees, we introduce a general-purpose formalization and generalization of these patterns. Given a training set of text containing known hypernym pairs, our algorithm automatically extracts useful dependency paths and applies them to new corpora to identify novel pairs. On our evaluation task (determining whether two nouns in a news article participate in a hypernym relationship), our automatically extracted database of hypernyms attains both higher precision and higher recall than WordNet.



The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces

Neural Information Processing Systems

We present an unsupervised algorithm for registering 3D surface scans of an object undergoing significant deformations. Our algorithm does not need markers, nor does it assume prior knowledge about object shape, the dynamics of its deformation, or scan alignment.


Real-Time Pitch Determination of One or More Voices by Nonnegative Matrix Factorization

Neural Information Processing Systems

An auditory "scene", composed of overlapping acoustic sources, can be viewed as a complex object whose constituent parts are the individual sources. Pitch is known to be an important cue for auditory scene analysis. In this paper, with the goal of building agents that operate in human environments, we describe a real-time system to identify the presence of one or more voices and compute their pitch. The signal processing in the front end is based on instantaneous frequency estimation, a method for tracking the partials of voiced speech, while the pattern-matching in the back end is based on nonnegative matrix factorization, an unsupervised algorithm for learning the parts of complex objects. While supporting a framework to analyze complicated auditory scenes, our system maintains real-time operability and state-of-the-art performance in clean speech.


Active Learning for Anomaly and Rare-Category Detection

Neural Information Processing Systems

We introduce a novel active-learning scenario in which a user wants to work with a learning algorithm to identify useful anomalies. These are distinguished from the traditional statistical definition of anomalies as outliers or merely ill-modeled points. Our distinction is that the usefulness of anomalies is categorized subjectively by the user. We make two additional assumptions. First, there exist extremely few useful anomalies to be hunted down within a massive dataset.