Goto

Collaborating Authors

 Country


A lasso for hierarchical interactions

arXiv.org Machine Learning

We add a set of convex constraints to the lasso to produce sparse interaction models that honor the hierarchy restriction that an interaction only be included in a model if one or both variables are marginally important. We give a precise characterization of the effect of this hierarchy constraint, prove that hierarchy holds with probability one and derive an unbiased estimate for the degrees of freedom of our estimator. A bound on this estimate reveals the amount of fitting "saved" by the hierarchy constraint. We distinguish between parameter sparsity - the number of nonzero coefficients - and practical sparsity - the number of raw variables one must measure to make a new prediction. Hierarchy focuses on the latter, which is more closely tied to important data collection concerns such as cost, time and effort. We develop an algorithm, available in the R package hierNet, and perform an empirical study of our method.


Bioclimating Modelling: A Machine Learning Perspective

arXiv.org Machine Learning

Many machine learning (ML) approaches are widely used to generate bioclimatic models for prediction of geographic range of organism as a function of climate. Applications such as prediction of range shift in organism, range of invasive species influenced by climate change are important parameters in understanding the impact of climate change. However, success of machine learning-based approaches depends on a number of factors. While it can be safely said that no particular ML technique can be effective in all applications and success of a technique is predominantly dependent on the application or the type of the problem, it is useful to understand their behaviour to ensure informed choice of techniques. This paper presents a comprehensive review of machine learning-based bioclimatic model generation and analyses the factors influencing success of such models. Considering the wide use of statistical techniques, in our discussion we also include conventional statistical techniques used in bioclimatic modelling.


Machine Learning with Operational Costs

arXiv.org Machine Learning

This work proposes a way to align statistical modeling with decision making. We provide a method that propagates the uncertainty in predictive modeling to the uncertainty in operational cost, where operational cost is the amount spent by the practitioner in solving the problem. The method allows us to explore the range of operational costs associated with the set of reasonable statistical models, so as to provide a useful way for practitioners to understand uncertainty. To do this, the operational cost is cast as a regularization term in a learning algorithm's objective function, allowing either an optimistic or pessimistic view of possible costs, depending on the regularization parameter. From another perspective, if we have prior knowledge about the operational cost, for instance that it should be low, this knowledge can help to restrict the hypothesis space, and can help with generalization. We provide a theoretical generalization bound for this scenario. We also show that learning with operational costs is related to robust optimization.


Group Symmetry and non-Gaussian Covariance Estimation

arXiv.org Machine Learning

We consider robust covariance estimation with group symmetry constraints. Non-Gaussian covariance estimation, e.g., Tyler scatter estimator and Multivariate Generalized Gaussian distribution methods, usually involve non-convex minimization problems. Recently, it was shown that the underlying principle behind their success is an extended form of convexity over the geodesics in the manifold of positive definite matrices. A modern approach to improve estimation accuracy is to exploit prior knowledge via additional constraints, e.g., restricting the attention to specific classes of covariances which adhere to prior symmetry structures. In this paper, we prove that such group symmetry constraints are also geodesically convex and can therefore be incorporated into various non-Gaussian covariance estimators. Practical examples of such sets include: circulant, persymmetric and complex/quaternion proper structures. We provide a simple numerical technique for finding maximum likelihood estimates under such constraints, and demonstrate their performance advantage using synthetic experiments.


Generalized Beta Divergence

arXiv.org Machine Learning

This paper generalizes beta divergence beyond its classical form associated with power variance functions of Tweedie models. Generalized form is represented by a compact definite integral as a function of variance function of the exponential dispersion model. This compact integral form simplifies derivations of many properties such as scaling, translation and expectation of the beta divergence. Further, we show that beta divergence and (half of) the statistical deviance are equivalent measures.


A class of random fields on complete graphs with tractable partition function

arXiv.org Machine Learning

The aim of this short note is to draw attention to a method by which the partition function and marginal probabilities for a certain class of random fields on complete graphs can be computed in polynomial time. This class includes Ising models with homogeneous pairwise potentials but arbitrary (inhomogeneous) unary potentials. Similarly, the partition function and marginal probabilities can be computed in polynomial time for random fields on complete bipartite graphs, provided they have homogeneous pairwise potentials. We expect that these tractable classes of large scale random fields can be very useful for the evaluation of approximation algorithms by providing exact error estimates.


Joint estimation of sparse multivariate regression and conditional graphical models

arXiv.org Machine Learning

Multivariate regression model is a natural generalization of the classical univari- ate regression model for fitting multiple responses. In this paper, we propose a high- dimensional multivariate conditional regression model for constructing sparse estimates of the multivariate regression coefficient matrix that accounts for the dependency struc- ture among the multiple responses. The proposed method decomposes the multivariate regression problem into a series of penalized conditional log-likelihood of each response conditioned on the covariates and other responses. It allows simultaneous estimation of the sparse regression coefficient matrix and the sparse inverse covariance matrix. The asymptotic selection consistency and normality are established for the diverging dimension of the covariates and number of responses. The effectiveness of the pro- posed method is also demonstrated in a variety of simulated examples as well as an application to the Glioblastoma multiforme cancer data.


Spherical perceptron as a storage memory with limited errors

arXiv.org Machine Learning

It has been known for a long time that the classical spherical perceptrons can be used as storage memories. Seminal work of Gardner, \cite{Gar88}, started an analytical study of perceptrons storage abilities. Many of the Gardner's predictions obtained through statistical mechanics tools have been rigorously justified. Among the most important ones are of course the storage capacities. The first rigorous confirmations were obtained in \cite{SchTir02,SchTir03} for the storage capacity of the so-called positive spherical perceptron. These were later reestablished in \cite{TalBook} and a bit more recently in \cite{StojnicGardGen13}. In this paper we consider a variant of the spherical perceptron that operates as a storage memory but allows for a certain fraction of errors. In Gardner's original work the statistical mechanics predictions in this directions were presented sa well. Here, through a mathematically rigorous analysis, we confirm that the Gardner's predictions in this direction are in fact provable upper bounds on the true values of the storage capacity. Moreover, we then present a mechanism that can be used to lower these bounds. Numerical results that we present indicate that the Garnder's storage capacity predictions may, in a fairly wide range of parameters, be not that far away from the true values.


Discrete perceptrons

arXiv.org Machine Learning

Perceptrons have been known for a long time as a promising tool within the neural networks theory. The analytical treatment for a special class of perceptrons started in seminal work of Gardner \cite{Gar88}. Techniques initially employed to characterize perceptrons relied on a statistical mechanics approach. Many of such predictions obtained in \cite{Gar88} (and in a follow-up \cite{GarDer88}) were later on established rigorously as mathematical facts (see, e.g. \cite{SchTir02,SchTir03,TalBook,StojnicGardGen13,StojnicGardSphNeg13,StojnicGardSphErr13}). These typically related to spherical perceptrons. A lot of work has been done related to various other types of perceptrons. Among the most challenging ones are what we will refer to as the discrete perceptrons. An introductory statistical mechanics treatment of such perceptrons was given in \cite{GutSte90}. Relying on results of \cite{Gar88}, \cite{GutSte90} characterized many of the features of several types of discrete perceptrons. We in this paper, consider a similar subclass of discrete perceptrons and provide a mathematically rigorous set of results related to their performance. As it will turn out, many of the statistical mechanics predictions obtained for discrete predictions will in fact appear as mathematically provable bounds. This will in a way emulate a similar type of behavior we observed in \cite{StojnicGardGen13,StojnicGardSphNeg13,StojnicGardSphErr13} when studying spherical perceptrons.


A Behavioural Foundation for Natural Computing and a Programmability Test

arXiv.org Artificial Intelligence

What does it mean to claim that a physical or natural system computes? One answer, endorsed here, is that computing is about programming a system to behave in different ways. This paper offers an account of what it means for a physical system to compute based on this notion. It proposes a behavioural characterisation of computing in terms of a measure of programmability, which reflects a system's ability to react to external stimuli. The proposed measure of programmability is useful for classifying computers in terms of the apparent algorithmic complexity of their evolution in time. I make some specific proposals in this connection and discuss this approach in the context of other behavioural approaches, notably Turing's test of machine intelligence. I also anticipate possible objections and consider the applicability of these proposals to the task of relating abstract computation to nature-like computation.