Goto

Collaborating Authors

 Country


Efficient Exact Inference in Planar Ising Models

Neural Information Processing Systems

We present polynomial-time algorithms for the exact computation of lowest- energy states, worst margin violators, partition functions, and marginals in binary undirected graphical models. Our approach provides an interesting alternative to the well-known graph cut paradigm in that it does not impose any submodularity constraints; instead we require planarity to establish a correspondence with perfect matchings in an expanded dual graph. Maximum-margin parameter estimation for a boundary detection task shows our approach to be efficient and effective.


Who’s Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation

Neural Information Processing Systems

Given a corpus of news items consisting of images accompanied by text captions, we want to find out "who's doing what", i.e. associate names and action verbs in the captions to the face and body pose of the persons in the images. We present a joint model for simultaneously solving the image-caption correspondences and learning visual appearance models for the face and pose classes occurring in the corpus. These models can then be used to recognize people and actions in novel images without captions. We demonstrate experimentally that our joint'face and pose' model solves the correspondence problem better than earlier models covering onlythe face, and that it can perform recognition of new uncaptioned images.


Learning to Rank by Optimizing NDCG Measure

Neural Information Processing Systems

Learning to rank is a relatively new field of study, aiming to learn a ranking function from a set of training data with relevancy labels. The ranking algorithms are often evaluated using Information Retrieval measures, such as Normalized Discounted Cumulative Gain [1] and Mean Average Precision [2]. Until recently, most learning to rank algorithms were not using a loss function related to the above mentioned evaluation measures. The main difficulty in direct optimization of these measures is that they depend on the ranks of documents, not the numerical values output by the ranking function. We propose a probabilistic framework that addresses this challenge by optimizing the expectation of NDCG over all the possible permutations of documents. A relaxation strategy is used to approximate the average of NDCG over the space of permutation, and a bound optimization approach is proposed to make the computation efficient. Extensive experiments show that the proposed algorithm outperforms state-of-the-art ranking algorithms on several benchmark data sets.


The 'tree-dependent components' of natural scenes are edge filters

Neural Information Processing Systems

We propose a new model for natural image statistics. Instead of minimizing dependency between components of natural images, we maximize a simple form of dependency in the form of tree-dependency. By learning filters and tree structures which are best suited for natural images we observe that the resulting filters are edge filters, similar to the famous ICA on natural images results. Calculating the likelihood of the model requires estimating the squared output of pairs of filters connected in the tree. We observe that after learning, these pairs of filters are predominantly of similar orientations but different phases, so their joint energy resembles models of complex cells.


Multi-stage Convex Relaxation for Learning with Sparse Regularization

Neural Information Processing Systems

We study learning formulations with non-convex regularizaton that are natural for sparse linear models. There are two approaches to this problem: (1) Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. (2) Convex relaxation such as $L_1$-regularization that solves the problem under some conditions. However it often leads to sub-optimal sparsity in reality. This paper tries to remedy the above gap between theory and practice. In particular, we investigate a multi-stage convex relaxation scheme for solving problems with non-convex regularization. Theoretically, we analyze the behavior of a resulting two-stage relaxation scheme for the capped-$L_1$ regularization. Our performance bound shows that the procedure is superior to the standard $L_1$ convex relaxation for learning sparse targets. Experiments confirm the effectiveness of this method on some simulation and real data.


Reconstruction of Sparse Circuits Using Multi-neuronal Excitation (RESCUME)

Neural Information Processing Systems

One of the central problems in neuroscience is reconstructing synaptic connectivity in neural circuits. Synapses onto a neuron can be probed by sequentially stimulating potentially pre-synaptic neurons while monitoring the membrane voltage of the post-synaptic neuron. Reconstructing a large neural circuit using such a “brute force” approach is rather time-consuming and inefficient because the connectivity in neural circuits is sparse. Instead, we propose to measure a post-synaptic neuron’s voltage while stimulating simultaneously multiple randomly chosen potentially pre-synaptic neurons. To extract the weights of individual synaptic connections we apply a decoding algorithm recently developed for compressive sensing. Compared to the brute force approach, our method promises significant time savings that grow with the size of the circuit. We use computer simulations to find optimal stimulation parameters and explore the feasibility of our reconstruction method under realistic experimental conditions including noise and non-linear synaptic integration. Multiple-neuron stimulation allows reconstructing synaptic connectivity just from the spiking activity of post-synaptic neurons, even when sub-threshold voltage is unavailable. By using calcium indicators, voltage-sensitive dyes, or multi-electrode arrays one could monitor activity of multiple post-synaptic neurons simultaneously, thus mapping their synaptic inputs in parallel, potentially reconstructing a complete neural circuit.


A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation

Neural Information Processing Systems

A non-parametric Bayesian model is proposed for processing multiple images. The analysis employs image features and, when present, the words associated with accompanying annotations. The model clusters the images into classes, and each image is segmented into a set of objects, also allowing the opportunity to assign a word to each object (localized labeling). Each object is assumed to be represented as a heterogeneous mix of components, with this realized via mixture models linking image features to object types. The number of image classes, number of object types, and the characteristics of the object-feature mixture models are inferred non-parametrically. To constitute spatially contiguous objects, a new logistic stick-breaking process is developed. Inference is performed efficiently via variational Bayesian analysis, with example results presented on two image databases.


On Learning Rotations

Neural Information Processing Systems

An algorithm is presented for online learning of rotations. The proposed algorithm involves matrix exponentiated gradient updates and is motivated by the von Neumann divergence.The multiplicative updates are exponentiated skew-symmetric matrices which comprise the Lie algebra of the rotation group. The orthonormality andunit determinant of the matrix parameter are preserved using matrix logarithms andexponentials and the algorithm lends itself to intuitive interpretation in terms of the differential geometry of the manifold associated with the rotation group. A complexity reduction result is presented that exploits the eigenstructure of the matrix updates to simplify matrix exponentiation to a quadratic form.


Local Gaussian Process Regression for Real Time Online Model Learning

Neural Information Processing Systems

Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian Process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The prediction for a query point is performed by weighted estimation using nearby local models. Unlike other GP approximations, such as mixtures of experts, we use a distance based measure for partitioning of the data and weighted prediction. The proposed method achieves online learning and prediction in real-time. Comparisons with other nonparametric regression methods show that LGP has higher accuracy than LWPR and close to the performance of standard GPR and nu-SVR.


Natural Image Denoising with Convolutional Networks

Neural Information Processing Systems

We present an approach to low-level vision that combines two main ideas: the use of convolutional networks as an image processing architecture and an unsupervised learning procedure that synthesizes training samples from specific noise models. We demonstrate this approach on the challenging problem of natural image denoising. Using a test set with a hundred natural images, we find that convolutional networks provide comparable and in some cases superior performance to state of the art wavelet and Markov random field (MRF) methods. Moreover, we find that a convolutional network offers similar performance in the blind denoising setting as compared to other techniques in the non-blind setting. We also show how convolutional networks are mathematically related to MRF approaches by presenting a mean field theory for an MRF specially designed for image denoising. Although these approaches are related, convolutional networks avoid computational difficulties in MRF approaches that arise from probabilistic learning and inference. This makes it possible to learn image processing architectures that have a high degree of representational power (we train models with over 15,000 parameters), but whose computational expense is significantly less than that associated with inference in MRF approaches with even hundreds of parameters.