Goto

Collaborating Authors

 Country


Generalization and Scaling in Reinforcement Learning

Neural Information Processing Systems

In associative reinforcement learning, an environment generates input vectors, a learning system generates possible output vectors, and a reinforcement functioncomputes feedback signals from the input-output pairs. The task is to discover and remember input-output pairs that generate rewards. Especially difficult cases occur when rewards are rare, since the expected time for any algorithm can grow exponentially with the size of the problem. Nonetheless, if a reinforcement function possesses regularities, and a learning algorithm exploits them, learning time can be reduced below that of non-generalizing algorithms. This paper describes a neural network algorithm called complementary reinforcement back-propagation(CRBP), and reports simulation results on problems designed to offer differing opportunities for generalization.


Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks

Neural Information Processing Systems

It has been known for many years that specific regions of the working cerebralcortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties ofthese networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures.We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.


TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations

Neural Information Processing Systems

We describe a model that can recognize two-dimensional shapes in an unsegmented image, independent of their orientation, position, and scale. The model, called TRAFFIC, efficiently represents the structural relation between an object and each of its component features by encoding the fixed viewpoint-invariant transformation from the feature's reference frame to the object's in the weights of a connectionist network. Using a hierarchy of such transformations, with increasing complexity of features at each successive layer, the network can recognize multiple objects in parallel. An implementation ofTRAFFIC is described, along with experimental results demonstrating the network's ability to recognize constellations of stars in a viewpoint-invariant manner. 1 INTRODUCTION A key goal of machine vision is to recognize familiar objects in an unsegmented image, independent of their orientation, position, and scale. Massively parallel models have long been used for lower-level vision tasks, such as primitive feature extraction and stereo depth.


Combining Visual and Acoustic Speech Signals with a Neural Network Improves Intelligibility

Neural Information Processing Systems

Previous attempts at using these visual speech signals to improve automatic speech recognition systems havecombined the acoustic and visual speech information at a symbolic level using heuristic rules. In this paper, we demonstrate an alternative approach to fusing the visual and acoustic speech information by training feedforward neural networks to map the visual signal onto the corresponding short-term spectral amplitude envelope (STSAE) of the acoustic signal. This information can be directly combined with the degraded acoustic STSAE. Significant improvementsare demonstrated in vowel recognition from noise-degraded acoustic signals. These results are compared to the performance of humans, as well as other pattern matching and estimation algorithms. 1 INTRODUCTION Current automatic speech recognition systems rely almost exclusively on the acoustic speechsignal, and as a consequence, these systems often perform poorly in noisy Combining Visual and Acoustic Speech Signals 233 environments.


A Cost Function for Internal Representations

Neural Information Processing Systems

We introduce a cost function for learning in feed-forward neural networks which is an explicit function of the internal representation inaddition to the weights. The learning problem can then be formulated as two simple perceptrons and a search for internal representations. Back-propagation is recovered as a limit. The frequency of successful solutions is better for this algorithm than for back-propagation when weights and hidden units are updated on the same timescale i.e. once every learning step. 1 INTRODUCTION In their review of back-propagation in layered networks, Rumelhart et al. (1986) describe the learning process in terms of finding good "internal representations" of the input patterns on the hidden units. However, the search for these representations isan indirect one, since the variables which are adjusted in its course are the connection weights, not the activations of the hidden units themselves when specific input patterns are fed into the input layer. Rather, the internal representations are represented implicitly in the connection weight values. More recently, Grossman et al. (1988 and 1989)1 suggested a way in which the search for internal representations could be made much more explicit.


Speaker Independent Speech Recognition with Neural Networks and Speech Knowledge

Neural Information Processing Systems

Yoshua Bengio Renato De Mori Dept Computer Science Dept Computer Science McGill University McGill University Montreal, Canada H3A2A7 RegisCardin Dept Computer Science McGill University ABSTRACT We attempt to combine neural networks with knowledge from speech science to build a speaker independent speech recognition system.This knowledge is utilized in designing the preprocessing, input coding, output coding, output supervision and architectural constraints. To handle the temporal aspect of speech we combine delays, copies of activations of hidden and output units at the input level, and Back-Propagation for Sequences (BPS), a learning algorithm for networks with local self-loops. This strategy is demonstrated in several experiments, inparticular a nasal discrimination task for which the application of a speech theory hypothesis dramatically improved generalization. 1 INTRODUCTION The strategy put forward in this research effort is to combine the flexibility and learning abilities of neural networks with as much knowledge from speech science as possible in order to build a speaker independent automatic speech recognition system. This knowledge is utilized in each of the steps in the construction ofan automated speech recognition system: preprocessing, input coding, output coding, output supervision, architectural design. Fast Fourier Transform (FFT), or compressing the frame sequence in such a way as to conserve an approximately constant rate of change.


Learning to Control an Unstable System with Forward Modeling

Neural Information Processing Systems

The forward modeling approach is a methodology for learning control whendata is available in distal coordinate systems. We extend previous work by considering how this methodology can be applied to the optimization of quantities that are distal not only in space but also in time. In many learning control problems, the output variables of the controller are not the natural coordinates in which to specify tasks and evaluate performance. Tasks are generally more naturally specified in "distal" coordinate systems (e.g., endpoint coordinates for manipulator motion) than in the "proximal" coordinate system of the controller (e.g., joint angles or torques). Furthermore, the relationship between proximal coordinates and distal coordinates is often not known a priori and, if known, not easily inverted.


A Method for the Associative Storage of Analog Vectors

Neural Information Processing Systems

A method for storing analog vectors in Hopfield's continuous feedback modelis proposed. By analog vectors we mean vectors whose components are real-valued. The vectors to be stored are set as equilibria of the network. The network model consists of one layer of visible neurons and one layer of hidden neurons. We propose a learning algorithm, which results in adjusting the positions of the equilibria, as well as guaranteeing their stability.


Neural Network Analysis of Distributed Representations of Dynamical Sensory-Motor Transformations in the Leech

Neural Information Processing Systems

Neu.·al Network Analysis of Distributed Representations of Dynamical Sensory-Motor rrransformations in the Leech Shawn R. LockerYt Van Fangt and Terrence J. Sejnowski Computational Neurobiology Laboratory Salk Institute for Biological Studies Box 85800, San Diego, CA 92138 ABSTRACT Interneurons in leech ganglia receive multiple sensory inputs and make synaptic contacts with many motor neurons. These "hidden" units coordinate several different behaviors. We used physiological and anatomical constraints to construct a model of the local bending reflex. Dynamical networks were trained on experimentally derived input-output patterns using recurrent back-propagation. Units in the model were modified to include electrical synapses and multiple synaptic time constants.


Associative Memory in a Simple Model of Oscillating Cortex

Neural Information Processing Systems

A generic model of oscillating cortex, which assumes "minimal" coupling justified by known anatomy, is shown to function as an associative memory,using previously developed theory. The network has explicit excitatory neurons with local inhibitory interneuron feedback that forms a set of nonlinear oscillators coupled only by long range excitatofy connections. Using a local Hebb-like learning rule for primary and higher order synapses at the ends of the long range connections, the system learns to store the kinds of oscillation amplitudepatterns observed in olfactory and visual cortex. This rule is derived from a more general "projection algorithm" for recurrent analog networks, that analytically guarantees content addressable memory storage of continuous periodic sequences - capacity: N/2 Fourier components for an N node network - no "spurious" attractors. 1 Introduction This is a sketch of recent results stemming from work which is discussed completely in [1, 2, 3]. Patterns of 40 to 80 hz oscillation have been observed in the large scale activity of olfactory cortex [4] and visual neocortex [5], and shown to predict the olfactory and visual pattern recognition responses of a trained animal.