Goto

Collaborating Authors

 Country


Active Gesture Recognition using Learned Visual Attention

Neural Information Processing Systems

We have developed a foveated gesture recognition system that runs in an unconstrained office environment with an active camera. Using visionroutines previously implemented for an interactive environment, wedetermine the spatial location of salient body parts of a user and guide an active camera to obtain images of gestures or expressions. A hidden-state reinforcement learning paradigm is used to implement visual attention. The attention module selects targets to foveate based on the goal of successful recognition, and uses a new multiple-model Q-Iearning formulation. Given a set of target and distractor gestures, our system can learn where to foveate to maximally discriminate a particular gesture. 1 INTRODUCTION Vision has numerous uses in the natural world.


Improving Committee Diagnosis with Resampling Techniques

Neural Information Processing Systems

Central to the performance improvement of a committee relative to individual networks is the error correlation between networks in the committee. We investigated methods of achieving error independence betweenthe networks by training the networks with different resampling sets from the original training set. The methods were tested on the sinwave artificial task and the real-world problems of hepatoma (liver cancer) and breast cancer diagnoses.


Prediction of Beta Sheets in Proteins

Neural Information Processing Systems

Most current methods for prediction of protein secondary structure use a small window of the protein sequence to predict the structure of the central amino acid. We describe a new method for prediction of the non-local structure called,8-sheet, which consists of two or more,8-strands that are connected by hydrogen bonds. Since,8-strands are often widely separated in the protein chain, a network with two windows is introduced. After training on a set of proteins the network predicts the sheets well, but there are many false positives. By using a global energy function the,8-sheet prediction is combined with a local prediction of the three secondary structures a-helix,,8-strand and coil.


Simulation of a Thalamocortical Circuit for Computing Directional Heading in the Rat

Neural Information Processing Systems

Several regions of the rat brain contain neurons known as head-direction celis, which encode the animal's directional heading during spatial navigation. This paper presents a biophysical model of head-direction cell acti vity, which suggests that a thalamocortical circuit might compute the rat's head direction by integrating the angular velocity of the head over time. The model was implemented using the neural simulator NEURON, and makes testable predictions about the structure and function of the rat head-direction circuit.


Improving Committee Diagnosis with Resampling Techniques

Neural Information Processing Systems

Central to the performance improvement of a committee relative to individual networks is the error correlation between networks in the committee. We investigated methods of achieving error independence between the networks by training the networks with different resampling sets from the original training set. The methods were tested on the sinwave artificial task and the real-world problems of hepatoma (liver cancer) and breast cancer diagnoses.


A Unified Learning Scheme: Bayesian-Kullback Ying-Yang Machine

Neural Information Processing Systems

A Bayesian-Kullback learning scheme, called Ying-Yang Machine, is proposed based on the two complement but equivalent Bayesian representations for joint density and their Kullback divergence. Not only the scheme unifies existing major supervised and unsupervised learnings, including the classical maximum likelihood or least square learning, the maximum information preservation, the EM & em algorithm and information geometry, the recent popular Helmholtz machine, as well as other learning methods with new variants and new results; but also the scheme provides a number of new learning models. 1 INTRODUCTION Many different learning models have been developed in the literature. We may come to an age of searching a unified scheme for them. With a unified scheme, we may understand deeply the existing models and their relationships, which may cause cross-fertilization on them to obtain new results and variants; We may also be guided to develop new learning models, after we get better understanding on which cases we have already studied or missed, which deserve to be further explored. Recently, a Baysian-Kullback scheme, called the YING-YANG Machine, has been proposed as such an effort(Xu, 1995a). It bases on the Kullback divergence and two complement but equivalent Baysian representations for the joint distribution of the input space and the representation space, instead of merely using Kullback divergence for matching un-structuralized joint densities in information geometry type learnings (Amari, 1995a&b; Byrne, 1992; Csiszar, 1975).


Does the Wake-sleep Algorithm Produce Good Density Estimators?

Neural Information Processing Systems

The wake-sleep algorithm (Hinton, Dayan, Frey and Neal 1995) is a relatively efficient method of fitting a multilayer stochastic generative model to high-dimensional data. In addition to the top-down connections in the generative model, it makes use of bottom-up connections for approximating the probability distribution over the hidden units given the data, and it trains these bottom-up connections using a simple delta rule. We use a variety of synthetic and real data sets to compare the performance of the wake-sleep algorithm with Monte Carlo and mean field methods for fitting the same generative model and also compare it with other models that are less powerful but easier to fit. 1 INTRODUCTION Neural networks are often used as bottom-up recognition devices that transform input vectors into representations of those vectors in one or more hidden layers. But multilayer networks of stochastic neurons can also be used as top-down generative models that produce patterns with complicated correlational structure in the bottom visible layer. In this paper we consider generative models composed of layers of stochastic binary logistic units. Given a generative model parameterized by top-down weights, there is an obvious way to perform unsupervised learning. The generative weights are adjusted to maximize the probability that the visible vectors generated by the model would match the observed data.


From Isolation to Cooperation: An Alternative View of a System of Experts

Neural Information Processing Systems

We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to find a local distance metric by adjusting the size and shape of the receptive field in which its predictions are valid, and also to detect relevant input features by adjusting its bias on the importance of individual input dimensions. We derive asymptotic results for our method. In a variety of simulations the properties of the algorithm are demonstrated with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning.


A Neural Network Autoassociator for Induction Motor Failure Prediction

Neural Information Processing Systems

We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.


Stochastic Hillclimbing as a Baseline Method for Evaluating Genetic Algorithms

Neural Information Processing Systems

We investigate the effectiveness of stochastic hillclimbing as a baseline for evaluating the performance of genetic algorithms (GAs) as combinatorial function optimizers. In particular, we address two problems to which GAs have been applied in the literature: Koza's ll-multiplexer problem and the jobshop problem. We demonstrate that simple stochastic hillclimbing methods are able to achieve results comparable or superior to those obtained by the GAs designed to address these two problems. We further illustrate, in the case of the jobshop problem, how insights obtained in the formulation of a stochastic hillclimbing algorithm can lead to improvements in the encoding used by a GA.