Country
Visual gesture-based robot guidance with a modular neural system
Littmann, Enno, Drees, Andrea, Ritter, Helge
We report on the development of the modular neural system "SEE EAGLE" for the visual guidance of robot pick-and-place actions. Several neural networks are integrated to a single system that visually recognizes human hand pointing gestures from stereo pairs of color video images. The output of the hand recognition stage is processed by a set of color-sensitive neural networks to determine the cartesian location of the target object that is referenced by the pointing gesture. Finally, this information is used to guide a robot to grab the target object and put it at another location that can be specified by a second pointing gesture. The accuracy of the current system allows to identify the location of the referenced target object to an accuracy of 1 cm in a workspace area of 50x50 cm.
Selective Attention for Handwritten Digit Recognition
Completely parallel object recognition is NPcomplete. Achieving a recognizer with feasible complexity requires a compromise between parallel and sequential processing where a system selectively focuses on parts of a given image, one after another. Successive fixations are generated to sample the image and these samples are processed and abstracted to generate a temporal context in which results are integrated over time. A computational model based on a partially recurrent feedforward network is proposed and made credible by testing on the real-world problem of recognition of handwritten digits with encouraging results.
Harmony Networks Do Not Work
Harmony networks have been proposed as a means by which connectionist models can perform symbolic computation. Indeed, proponents claim that a harmony network can be built that constructs parse trees for strings in a context free language. This paper shows that harmony networks do not work in the following sense: they construct many outputs that are not valid parse trees. In order to show that the notion of systematicity is compatible with connectionism, Paul Smolensky, Geraldine Legendre and Yoshiro Miyata (Smolensky, Legendre, and Miyata 1992; Smolen sky 1993; Smolen sky, Legendre, and Miyata 1994) proposed a mechanism, "Harmony Theory," by which connectionist models purportedly perform structure sensitive operations without implementing classical algorithms. Harmony theory describes a "harmony network" which, in the course of reaching a stable equilibrium, apparently computes parse trees that are valid according to the rules of a particular context-free grammar.
Neural Control for Nonlinear Dynamic Systems
Yu, Ssu-Hsin, Annaswamy, Anuradha M.
A neural network based approach is presented for controlling two distinct types of nonlinear systems. The first corresponds to nonlinear systems with parametric uncertainties where the parameters occur nonlinearly. The second corresponds to systems for which stabilizing control structures cannot be determined. The proposed neural controllers are shown to result in closed-loop system stability under certain conditions.
Optimizing Cortical Mappings
Goodhill, Geoffrey J., Finch, Steven, Sejnowski, Terrence J.
"Topographic" mappings occur frequently in the brain. A popular approach to understanding the structure of such mappings is to map points representing input features in a space of a few dimensions to points in a 2 dimensional space using some selforganizing algorithm. We argue that a more general approach may be useful, where similarities between features are not constrained to be geometric distances, and the objective function for topographic matching is chosen explicitly rather than being specified implicitly by the self-organizing algorithm. We investigate analytically an example of this more general approach applied to the structure of interdigitated mappings, such as the pattern of ocular dominance columns in primary visual cortex. 1 INTRODUCTION A prevalent feature of mappings in the brain is that they are often "topographic". In the most straightforward case this simply means that neighbouring points on a two-dimensional sheet (e.g. the retina) are mapped to neighbouring points in a more central two-dimensional structure (e.g. the optic tectum). However a more complex case, still often referred to as topographic, is the mapping from an abstract space of features (e.g.
Modeling Interactions of the Rat's Place and Head Direction Systems
Redish, A. David, Touretzky, David S.
We have developed a computational theory of rodent navigation that includes analogs of the place cell system, the head direction system, and path integration. In this paper we present simulation results showing how interactions between the place and head direction systems can account for recent observations about hippocampal place cell responses to doubling and/or rotation of cue cards in a cylindrical arena (Sharp et at.,
A Model of Spatial Representations in Parietal Cortex Explains Hemineglect
Pouget, Alexandre, Sejnowski, Terrence J.
We have recently developed a theory of spatial representations in which the position of an object is not encoded in a particular frame of reference but, instead, involves neurons computing basis functions of their sensory inputs. This type of representation is able to perform nonlinear sensorimotor transformations and is consistent with the response properties of parietal neurons. We now ask whether the same theory could account for the behavior of human patients with parietal lesions. These lesions induce a deficit known as hemineglect that is characterized by a lack of reaction to stimuli located in the hemispace contralateral to the lesion. A simulated lesion in a basis function representation was found to replicate three of the most important aspects of hemineglect: i) The models failed to cross the leftmost lines in line cancellation experiments, ii) the deficit affected multiple frames of reference and, iii) it could be object centered. These results strongly support the basis function hypothesis for spatial representations and provide a computational theory of hemineglect at the single cell level. 1 Introduction According to current theories of spatial representations, the positions of objects are represented in multiple modules throughout the brain, each module being specialized for a particular sensorimotor transformation and using its own frame of reference. For instance, the lateral intraparietal area (LIP) appears to encode the location of objects in oculocentric coordinates, presumably for the control of saccadic eye movements.
An Information-theoretic Learning Algorithm for Neural Network Classification
Miller, David J., Rao, Ajit V., Rose, Kenneth, Gersho, Allen
A new learning algorithm is developed for the design of statistical classifiers minimizing the rate of misclassification. The method, which is based on ideas from information theory and analogies to statistical physics, assigns data to classes in probability. The distributions are chosen to minimize the expected classification error while simultaneously enforcing the classifier's structure and a level of "randomness" measured by Shannon's entropy. Achievement of the classifier structure is quantified by an associated cost. The constrained optimization problem is equivalent to the minimization of a Helmholtz free energy, and the resulting optimization method is a basic extension of the deterministic annealing algorithm that explicitly enforces structural constraints on assignments while reducing the entropy and expected cost with temperature. In the limit of low temperature, the error rate is minimized directly and a hard classifier with the requisite structure is obtained. This learning algorithm can be used to design a variety of classifier structures. The approach is compared with standard methods for radial basis function design and is demonstrated to substantially outperform other design methods on several benchmark examples, while often retaining design complexity comparable to, or only moderately greater than that of strict descent-based methods.
A Model of Auditory Streaming
McCabe, Susan L., Denham, Michael J.
The formation of associations between signals, which are considered to arise from the same external source, allows the organism to recognise significant patterns and relationships within the signals from each source without being confused by accidental coincidences between unrelated signals (Bregman, 1990). The intrinsically temporal nature of sound means that in addition to being able to focus on the signal of interest, perhaps of equal significance, is the ability to predict how that signal is expected to progress; such expectations can then be used to facilitate further processing of the signal. It is important to remember that perception is a creative act (Luria, 1980). The organism creates its interpretation of the world in response to the current stimuli, within the context of its current state of alertness, attention, and previous experience. The creative aspects of perception are exemplified in the auditory system where peripheral processing decomposes acoustic stimuli.