Country
Consistent Classification, Firm and Soft
A classifier is called consistent with respect to a given set of classlabeled points if it correctly classifies the set. We consider classifiers defined by unions of local separators and propose algorithms for consistent classifier reduction. The expected complexities of the proposed algorithms are derived along with the expected classifier sizes. In particular, the proposed approach yields a consistent reduction of the nearest neighbor classifier, which performs "firm" classification, assigning each new object to a class, regardless of the data structure. The proposed reduction method suggests a notion of "soft" classification, allowing for indecision with respect to objects which are insufficiently or ambiguously supported by the data. The performances of the proposed classifiers in predicting stock behavior are compared to that achieved by the nearest neighbor method.
Learning Decision Theoretic Utilities through Reinforcement Learning
Stensmo, Magnus, Sejnowski, Terrence J.
Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, where the cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(Aยป can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.
Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches
This paper shows how the prices of option contracts traded in financial markets can be tracked sequentially by means of the Extended Kalman Filter algorithm. I consider call and put option pairs with identical strike price and time of maturity as a two output nonlinear system. The Black-Scholes approach popular in Finance literature and the Radial Basis Functions neural network are used in modelling the nonlinear system generating these observations. I show how both these systems may be identified recursively using the EKF algorithm. I present results of simulations on some FTSE 100 Index options data and discuss the implications of viewing the pricing problem in this sequential manner. 1 INTRODUCTION Data from the financial markets has recently been of much interest to the neural computing community. The complexity of the underlying macroeconomic system and how traders react to the flow of information leads to highly nonlinear relationships between observations.
Spatial Decorrelation in Orientation Tuned Cortical Cells
Dimitrov, Alexander, Cowan, Jack D.
In this paper we propose a model for the lateral connectivity of orientation-selective cells in the visual cortex based on informationtheoretic considerations. We study the properties of the input signal to the visual cortex and find new statistical structures which have not been processed in the retino-geniculate pathway. Applying the idea that the system optimizes the representation of incoming signals, we derive the lateral connectivity that will achieve this for a set of local orientation-selective patches, as well as the complete spatial structure of a layer of such patches. We compare the results with various physiological measurements.
Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons
Furthermore it is shown that networks of noisy spiking neurons with temporal coding have a strictly larger computational power than sigmoidal neural nets with the same number of units. 1 Introduction and Definitions We consider a formal model SNN for a ยงpiking neuron network that is basically a reformulation of the spike response model (and of the leaky integrate and fire model) without using 6-functions (see [Maass, 1996a] or [Maass, 1996b] for further backgrou nd).
Neural Network Models of Chemotaxis in the Nematode Caenorhabditis Elegans
Ferrรฉe, Thomas C., Marcotte, Ben A., Lockery, Shawn R.
We train recurrent networks to control chemotaxis in a computer model of the nematode C. elegans. The model presented is based closely on the body mechanics, behavioral analyses, neuroanatomy and neurophysiology of C. elegans, each imposing constraints relevant for information processing. Simulated worms moving autonomously in simulated chemical environments display a variety of chemotaxis strategies similar to those of biological worms. 1 INTRODUCTION The nematode C. elegans provides a unique opportunity to study the neuronal basis of neural computation in an animal capable of complex goal-oriented behaviors. The adult hermaphrodite is only 1 mm long, and has exactly 302 neurons and 95 muscle cells. The morphology of every cell and the location of most electrical and chemical synapses are known precisely (White et al., 1986), making C. elegans especially attractive for study.
Statistically Efficient Estimations Using Cortical Lateral Connections
Pouget, Alexandre, Zhang, Kechen
Coarse codes are widely used throughout the brain to encode sensory and motor variables. Methods designed to interpret these codes, such as population vector analysis, are either inefficient, i.e., the variance of the estimate is much larger than the smallest possible variance, or biologically implausible, like maximum likelihood. Moreover, these methods attempt to compute a scalar or vector estimate of the encoded variable. Neurons are faced with a similar estimation problem. They must read out the responses of the presynaptic neurons, but, by contrast, they typically encode the variable with a further population code rather than as a scalar. We show how a nonlinear recurrent network can be used to perform these estimation in an optimal way while keeping the estimate in a coarse code format. This work suggests that lateral connections in the cortex may be involved in cleaning up uncorrelated noise among neurons representing similar variables.
Reinforcement Learning for Mixed Open-loop and Closed-loop Control
Hansen, Eric A., Barto, Andrew G., Zilberstein, Shlomo
Closed-loop control relies on sensory feedback that is usually assumed to be free. But if sensing incurs a cost, it may be costeffective to take sequences of actions in open-loop mode. We describe a reinforcement learning algorithm that learns to combine open-loop and closed-loop control when sensing incurs a cost. Although we assume reliable sensors, use of open-loop control means that actions must sometimes be taken when the current state of the controlled system is uncertain. This is a special case of the hidden-state problem in reinforcement learning, and to cope, our algorithm relies on short-term memory. The main result of the paper is a rule that significantly limits exploration of possible memory states by pruning memory states for which the estimated value of information is greater than its cost. We prove that this rule allows convergence to an optimal policy.
Complex-Cell Responses Derived from Center-Surround Inputs: The Surprising Power of Intradendritic Computation
Mel, Bartlett W., Ruderman, Daniel L., Archie, Kevin A.
Biophysical modeling studies have previously shown that cortical pyramidal cells driven by strong NMDA-type synaptic currents and/or containing dendritic voltage-dependent Ca or Na channels, respond more strongly when synapses are activated in several spatially clustered groups of optimal size-in comparison to the same number of synapses activated diffusely about the dendritic arbor [8]- The nonlinear intradendritic interactions giving rise to this "cluster sensitivity" property are akin to a layer of virtual nonlinear "hidden units" in the dendrites, with implications for the cellular basis of learning and memory [7, 6], and for certain classes of nonlinear sensory processing [8]- In the present study, we show that a single neuron, with access only to excitatory inputs from unoriented ONand OFFcenter cells in the LGN, exhibits the principal nonlinear response properties of a "complex" cell in primary visual cortex, namely orientation tuning coupled with translation invariance and contrast insensitivity_ We conjecture that this type of intradendritic processing could explain how complex cell responses can persist in the absence of oriented simple cell input [13]- 84 B. W. Mel, D. L. Ruderman and K. A. Archie