Goto

Collaborating Authors

 Country


Learning with Noise and Regularizers in Multilayer Neural Networks

Neural Information Processing Systems

We study the effect of noise and regularization in an online gradient-descent learning scenario for a general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units; the examples are corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise and that of weight-decay regularization on the dynamical evolution of the order parameters and the generalization error in various phases of the learning process.


Interpolating Earth-science Data using RBF Networks and Mixtures of Experts

Neural Information Processing Systems

We present a mixture of experts (ME) approach to interpolate sparse, spatially correlated earth-science data. Kriging is an interpolation method which uses a global covariation model estimated from the data to take account of the spatial dependence in the data. Based on the close relationship between kriging and the radial basis function (RBF) network (Wan & Bone, 1996), we use a mixture of generalized RBF networks to partition the input space into statistically correlated regions and learn the local covariation model of the data in each region. Applying the ME approach to simulated and real-world data, we show that it is able to achieve good partitioning of the input space, learn the local covariation models and improve generalization.


Learning Decision Theoretic Utilities through Reinforcement Learning

Neural Information Processing Systems

Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, where the cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(Aยป can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.


Edges are the 'Independent Components' of Natural Scenes.

Neural Information Processing Systems

Field (1994) has suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and Barlow (1989) has reasoned that such responses should emerge from an unsupervised learning algorithm that attempts to find a factorial code of independent visual features. We show here that nonlinear'infomax', when applied to an ensemble of natural scenes, produces sets of visual filters that are localised and oriented. Some of these filters are Gabor-like and resemble those produced by the sparseness-maximisation network of Olshausen & Field (1996). In addition, the outputs of these filters are as independent as possible, since the infomax network is able to perform Independent Components Analysis (ICA). We compare the resulting ICA filters and their associated basis functions, with other decorrelating filters produced by Principal Components Analysis (PCA) and zero-phase whitening filters (ZCA).


Dynamic Features for Visual Speechreading: A Systematic Comparison

Neural Information Processing Systems

Humans use visual as well as auditory speech signals to recognize spoken words. A variety of systems have been investigated for performing this task. The main purpose of this research was to systematically compare the performance of a range of dynamic visual features on a speechreading task. We have found that normalization of images to eliminate variation due to translation, scale, and planar rotation yielded substantial improvements in generalization performance regardless of the visual representation used. In addition, the dynamic information in the difference between successive frames yielded better performance than optical-flow based approaches, and compression by local low-pass filtering worked surprisingly better than global principal components analysis (PCA). These results are examined and possible explanations are explored.


Multi-effect Decompositions for Financial Data Modeling

Neural Information Processing Systems

High frequency foreign exchange data can be decomposed into three components: the inventory effect component, the surprise infonnation (news) component and the regular infonnation component. The presence of the inventory effect and news can make analysis of trends due to the diffusion of infonnation (regular information component) difficult. We propose a neural-net-based, independent component analysis to separate high frequency foreign exchange data into these three components. Our empirical results show that our proposed multi-effect decomposition can reveal the intrinsic price behavior.


Microscopic Equations in Rough Energy Landscape for Neural Networks

Neural Information Processing Systems

We consider the microscopic equations for learning problems in neural networks. The aligning fields of an example are obtained from the cavity fields, which are the fields if that example were absent in the learning process. In a rough energy landscape, we assume that the density of the local minima obey an exponential distribution, yielding macroscopic properties agreeing with the first step replica symmetry breaking solution. Iterating the microscopic equations provide a learning algorithm, which results in a higher stability than conventional algorithms. 1 INTRODUCTION Most neural networks learn iteratively by gradient descent. As a result, closed expressions for the final network state after learning are rarely known. This precludes further analysis of their properties, and insights into the design of learning algorithms.


An Apobayesian Relative of Winnow

Neural Information Processing Systems

We study a mistake-driven variant of an online Bayesian learning algorithm (similar to one studied by Cesa-Bianchi, Helmbold, and Panizza [CHP96]). This variant only updates its state (learns) on trials in which it makes a mistake. The algorithm makes binary classifications using a linear-threshold classifier and runs in time linear in the number of attributes seen by the learner. We have been able to show, theoretically and in simulations, that this algorithm performs well under assumptions quite different from those embodied in the prior of the original Bayesian algorithm. It can handle situations that we do not know how to handle in linear time with Bayesian algorithms. We expect our techniques to be useful in deriving and analyzing other apobayesian algorithms. 1 Introduction We consider two styles of online learning.


Spatiotemporal Coupling and Scaling of Natural Images and Human Visual Sensitivities

Neural Information Processing Systems

We study the spatiotemporal correlation in natural time-varying images and explore the hypothesis that the visual system is concerned with the optimal coding of visual representation through spatiotemporal decorrelation of the input signal. Based on the measured spatiotemporal power spectrum, the transform needed to decorrelate input signal is derived analytically and then compared with the actual processing observed in psychophysical experiments.


Regression with Input-Dependent Noise: A Bayesian Treatment

Neural Information Processing Systems

In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.