Country
An Investigation of AI and Expert Systems Literature: 1980-1984
This article records the results of an experiment in which a survey of AI and expert systems (ES) literature was attempted using Science Citation Indexes. The survey identified a sample of authors and institutions that have had a significant impact on the historical development of AI and ES. However, it also identified several glaring problems with using Science Citation Indexes as a method of comprehensively studying a body of scientific research. Accordingly, the reader is cautioned against using the results presented here to conclude that author A is a better or worse AI researcher than author B.
Expert Systems: How Far Can They Go? Part Two
A panel session at the 1989 International Joint Conference on Artificial Intelligence in Los Angeles dealt with the subject of knowledge-based systems; the session was entitled "Expert Systems: How Far Can They Go?" The panelists included Randall Davis (Massachusetts Institute of Technology); Stuart Dreyfus (University of California at Berkeley); Brian Smith (Xerox Palo Alto Research Center); and Terry Winograd (Stanford University), chairman. Part 1 of this article, which appeared in the Spring 1989 issue, began with Winograd's original charge to the panel, followed by lightly edited transcripts of presentations from Winograd and Dreyfus. Part 2 begins with the presentations from Smith and Davis and concludes with the panel discussion. Although almost four years have passed since this discussion took place, the issues raised and the points discussed appear no less relevant today.
Artificial Laboratories
An artificial laboratory is a hypothetical computing environment of the future that would integrate mathematical and statistical tools with AI methods to assist in computer modeling and simulation. An integrated approach of this kind has great potential for accelerating the rate of scientific discovery.
The Fifth International Conference on Machine Learning
Fayyad, Usama, Laird, John E., Irani, Keki B.
Over the last eight years, four workshops on machine learning have been held. Participation in these workshops was by invitation only. In response to the rapid growth in the number of researchers active in machine learning, it was decided that the fifth meeting should be a conference with open attendance and full review for presented papers. Thus, the first open conference on machine learning took place 12 to 14 June 1988 at The University of Michigan at Ann Arbor.
The Mind at AI: Horseless Carriage to Clock
Commentators on AI converge on two goals they believe define the field: (1) to better understand the mind by specifying computational models and (2) to construct computer systems that perform actions traditionally regarded as mental. We should recognize that AI has a third, hidden, more basic aim; that the first two goals are special cases of the third; and that the actual technical substance of AI concerns only this more basic aim. This third aim is to establish new computation-based representational media, media in which human intellect can come to express itself with different clarity and force. This article articulates this proposal by showing how the intellectual activity we label AI can be likened in revealing ways to each of five familiar technologies.
Review of Natural Language Understanding
Hutchins not only presents machine translation research (such as problems of machine translation It is the theories, algorithms, and designs practical versus theoretical, empirical also not clear that the AI philosophy but also the history, goals, assumptions, versus perfectionist, and direct versus of understanding and meaning (p 327) and constraints of each project.