Goto

Collaborating Authors

 Country


Automatic Derivation of Statistical Algorithms: The EM Family and Beyond

Neural Information Processing Systems

Machine learning has reached a point where many probabilistic methods can be understood as variations, extensions and combinations of a much smaller set of abstract themes, e.g., as different instances of the EM algorithm. This enables the systematic derivation of algorithms customized for different models.


Critical Lines in Symmetry of Mixture Models and its Application to Component Splitting

Neural Information Processing Systems

We show the existence of critical points as lines for the likelihood function of mixture-type models. They are given by embedding of a critical point for models with less components. A sufficient condition that the critical line gives local maxima or saddle points is also derived. Based on this fact, a component-split method is proposed for a mixture of Gaussian components, and its effectiveness is verified through experiments.


Margin-Based Algorithms for Information Filtering

Neural Information Processing Systems

In this work, we study an information filtering model where the relevance labels associated to a sequence of feature vectors are realizations of an unknown probabilistic linear function. Building on the analysis of a restricted version of our model, we derive a general filtering rule based on the margin of a ridge regression estimator. While our rule may observe the label of a vector only by classfying the vector as relevant, experiments on a real-world document filtering problem show that the performance of our rule is close to that of the online classifier which is allowed to observe all labels. These empirical results are complemented by a theoretical analysis where we consider a randomized variant of our rule and prove that its expected number of mistakes is never much larger than that of the optimal filtering rule which knows the hidden linear model.


Learning to Detect Natural Image Boundaries Using Brightness and Texture

Neural Information Processing Systems

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, a classifier is trained using human labeled images as ground truth. We present precision-recall curves showing that the resulting detector outperforms existing approaches.


Spike Timing-Dependent Plasticity in the Address Domain

Neural Information Processing Systems

Address-event representation (AER), originally proposed as a means to communicate sparse neural events between neuromorphic chips, has proven efficient in implementing large-scale networks with arbitrary, configurable synaptic connectivity. In this work, we further extend the functionality of AER to implement arbitrary, configurable synaptic plasticity in the address domain. As proof of concept, we implement a biologically inspired form of spike timing-dependent plasticity (STDP) based on relative timing of events in an AER framework. Experimental results from an analog VLSI integrate-and-fire network demonstrate address domain learning in a task that requires neurons to group correlated inputs.


Regularized Greedy Importance Sampling

Neural Information Processing Systems

Greedy importance sampling is an unbiased estimation technique that reduces the variance of standard importance sampling by explicitly searching for modes in the estimation objective. Previous work has demonstrated the feasibility of implementing this method and proved that the technique is unbiased in both discrete and continuous domains. In this paper we present a reformulation of greedy importance sampling that eliminates the free parameters from the original estimator, and introduces a new regularization strategy that further reduces variance without compromising unbiasedness. The resulting estimator is shown to be effective for difficult estimation problems arising in Markov random field inference. In particular, improvements are achieved over standard MCMC estimators when the distribution has multiple peaked modes.


Application of Variational Bayesian Approach to Speech Recognition

Neural Information Processing Systems

In this paper, we propose a Bayesian framework, which constructs shared-state triphone HMMs based on a variational Bayesian approach, and recognizes speech based on the Bayesian prediction classification; variational Bayesian estimation and clustering for speech recognition (VBEC). An appropriate model structure with high recognition performance can be found within a VBEC framework. Unlike conventional methods, including BIC or MDL criterion based on the maximum likelihood approach, the proposed model selection is valid in principle, even when there are insufficient amounts of data, because it does not use an asymptotic assumption. In isolated word recognition experiments, we show the advantage of VBEC over conventional methods, especially when dealing with small amounts of data.


Optoelectronic Implementation of a FitzHugh-Nagumo Neural Model

Neural Information Processing Systems

An optoelectronic implementation of a spiking neuron model based on the FitzHugh-Nagumo equations is presented. A tunable semiconductor laser source and a spectral filter provide a nonlinear mapping from driver voltage to detected signal. Linear electronic feedback completes the implementation, which allows either electronic or optical input signals. Experimental results for a single system and numeric results of model interaction confirm that important features of spiking neural models can be implemented through this approach.


Robust Novelty Detection with Single-Class MPM

Neural Information Processing Systems

This algorithm-the "single-class minimax probability machine (MPM)"- is built on a distribution-free methodology that minimizes the worst-case probability of a data point falling outside of a convex set, given only the mean and covariance matrix of the distribution and making no further distributional assumptions. We present a robust approach to estimating the mean and covariance matrix within the general two-class MPM setting, and show how this approach specializes to the single-class problem. We provide empirical results comparing the single-class MPM to the single-class SVM and a two-class SVM method. 1 Introduction Novelty detection is an important unsupervised learning problem in which test data are to be judged as having been generated from the same or a different process as that which generated the training data.


Boosting Density Estimation

Neural Information Processing Systems

Several authors have suggested viewing boosting as a gradient descent search for a good fit in function space. We apply gradient-based boosting methodology to the unsupervised learning problem of density estimation. We show convergence properties of the algorithm and prove that a strength of weak learnability property applies to this problem as well. We illustrate the potential of this approach through experiments with boosting Bayesian networks to learn density models.