Goto

Collaborating Authors

 Country


TODTLER: Two-Order-Deep Transfer Learning

AAAI Conferences

The traditional way of obtaining models from data, inductive learning, has proved itself both in theory and in many practical applications. However, in domains where data is difficult or expensive to obtain, e.g., medicine, deep transfer learning is a more promising technique. It circumvents the model acquisition difficulties caused by scarce data in a target domain by carrying over structural properties of a model learned in a source domain where training data is ample. Nonetheless, the lack of a principled view of transfer learning so far has limited its adoption. In this paper, we address this issue by regarding transfer learning as a process that biases learning in a target domain in favor of patterns useful in a source domain. Specifically, we consider a first-order logic model of the data as an instantiation of a set of second-order templates. Hence, the usefulness of a model is partly determined by the learner's prior distribution over these template sets. The main insight of our work is that transferring knowledge amounts to acquiring a posterior over the second-order template sets by learning in the source domain and using this posterior when learning in the target setting. Our experimental evaluation demonstrates our approach to outperform the existing transfer learning techniques in terms of accuracy and runtime.


Strong Bounds Consistencies and Their Application to Linear Constraints

AAAI Conferences

We propose two local consistencies that extend bounds consistency (BC) by simultaneously considering combinations of constraints as opposed to single constraints. We prove that these two local consistencies are both stronger than BC, but are NP-hard to enforce even when constraints are linear. Hence, we propose two polynomial-time techniques to enforce approximations of these two consistencies on linear constraints. One is a reformulation of the constraints on which we enforce BC whereas the other is a polynomial time algorithm. Both achieve stronger pruning than BC. Our experiments show large differences in favor of our approaches.


A Succinct Conceptualization of the Foundations for a Network Organization Paradigm

AAAI Conferences

The NO paradigm can model many operations. Examples When agents dwell inside an organization, they form patterns are systems of river dam control, factory cells, electrical of interactions that we call paradigms. There are many power grids, and traffic control on land, sea, and space. As existing paradigms to describe organizations, which affect a paradigm, it does not functionally alter the operations to its performance features. These paradigms include hierarchies, which it is applied. The paradigm can be understood in terms holarchies, coalitions, teams, congregations, societies, of the ways it permits command and control regimes. Invariably, federations, markets and matrix organizations (Horling and NO relies on a network on which it dwells.


Learning Entity and Relation Embeddings for Knowledge Graph Completion

AAAI Conferences

Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. In fact, an entity may have multiple aspects and various relations may focus on different aspects of entities, which makes a common space insufficient for modeling. In this paper, we propose TransR to build entity and relation embeddings in separate entity space and relation spaces. Afterwards, we learn embeddings by first projecting entities from entity space to corresponding relation space and then building translations between projected entities. In experiments, we evaluate our models on three tasks including link prediction, triple classification and relational fact extraction. Experimental results show significant and consistent improvements compared to state-of-the-art baselines including TransE and TransH.


Refer-to-as Relations as Semantic Knowledge

AAAI Conferences

We study Refer-to-as relations as a new type of semanticknowledge. Compared to the much studied Is-a relation,which concerns factual taxonomy knowledge, Refer-to-as relationsaim to address pragmatic semantic knowledge. Forexample, a โ€œpenguinโ€ is a โ€œbirdโ€ from a taxonomy point ofview, but people rarely refer to a โ€œpenguinโ€ as a โ€œbirdโ€ invernacular use. This observation closely relates to the entrylevelcategorization studied in Prototype Theory in Psychology.We posit that Refer-to-as relations can be learned fromdata, and that both textual and visual information would behelpful in inferring the relations. By integrating existing lexicalstructure knowledge with language statistics and visualsimilarities, we formulate a collective inference approach tomap all object names in an encyclopedia to commonly usednames for each object. Our contributions include a new labeleddata set, the inference and optimization approach, andthe computed mappings and similarities.


Modelling Individual Negative Emotion Spreading Process with Mobile Phones

AAAI Conferences

Individual mood is important for physical and emotional well-being, creativity and working memory. However, due to the lack of long-term real tracking daily data in individual level, most current works focus their efforts on population level and short-term small group. An ignored yet important task is to find the sentiment spreading mechanism in individual level from their daily behavior data. This paper studies this task by raising the following fundamental and summarization question, being not sufficiently answered by the literature so far:Given a social network, how the sentiment spread? The current individual-level network spreading models always assume one can infect others only when he/she has been infected. Considering the negative emotion spreading characters in individual level, we loose this assumption, and give an individual negative emotion spreading model. In this paper, we propose a Graph-Coupled Hidden Markov Sentiment Model for modeling the propagation of infectious negative sentiment locally within a social network. Taking the MIT Social Evolution dataset as an example, the experimental results verify the efficacy of our techniques on real-world data.


Egalitarian Collective Decision Making under Qualitative Possibilistic Uncertainty: Principles and Characterization

AAAI Conferences

Following Fleming (1952), Harsanyi (1955) showed that if the collective preference satisfies von Neumann and Morgenstern's Prade's axioms (1995), and particularly risk aversion, The present paper raises the question of collective resorts on (i) the identification of a theory of decision decision making under possibilistic uncertainty. The making under uncertainty (DMU) that captures the decision next Section recalls the basic notions on which our work relies makers' behaviour with respect to uncertainty and (ii) the (decision under possibilistic uncertainty, collective utility specification of a collective utility function (CUF) as it may functions, etc.).


Coupled Interdependent Attribute Analysis on Mixed Data

AAAI Conferences

In the real-world applications, heterogeneous interdependent attributes that consist of both discrete and numerical variables can be observed ubiquitously. The usual representation of these data sets is an information table, assuming the independence of attributes. However, very often, they are actually interdependent on one another, either explicitly or implicitly. Limited research has been conducted in analyzing such attribute interactions, which causes the analysis results to be more local than global. This paper proposes the coupled heterogeneous attribute analysis to capture the interdependence among mixed data by addressing coupling context and coupling weights in unsupervised learning. Such global couplings integrate the interactions within discrete attributes, within numerical attributes and across them to form the coupled representation for mixed type objects based on dimension conversion and feature selection. This work makes one step forward towards explicitly modeling the interdependence of heterogeneous attributes among mixed data, verified by the applications in data structure analysis, data clustering evaluation, and density comparison. Substantial experiments on 12 UCI data sets show that our approach can effectively capture the global couplings of heterogeneous attributes and outperforms the state-of-the-art methods, supported by statistical analysis.


Information Gathering and Reward Exploitation of Subgoals for POMDPs

AAAI Conferences

Planning in large partially observable Markov decision processes (POMDPs) is challenging especially when a long planning horizon is required. A few recent algorithms successfully tackle this case but at the expense of a weaker information-gathering capacity. In this paper, we propose Information Gathering and Reward Exploitation of Subgoals (IGRES), a randomized POMDP planning algorithm that leverages information in the state space to automatically generate "macro-actions" to tackle tasks with long planning horizons, while locally exploring the belief space to allow effective information gathering. Experimental results show that IGRES is an effective multi-purpose POMDP solver, providing state-of-the-art performance for both long horizon planning tasks and information-gathering tasks on benchmark domains. Additional experiments with an ecological adaptive management problem indicate that IGRES is a promising tool for POMDP planning in real-world settings.


Spatio-Temporal Signatures of User-Centric Data: How Similar Are We?

AAAI Conferences

Much work has been done on understanding and predicting human mobility in time. In this work, we are interested in obtaining a set of users who are spatio-temporally most similar to a query user. We propose an efficient way of user data representation called Spatio-Temporal Signatures to keep track of complete record of user movement. We define a measure called Spatio-Temporal similarity for comparing a given pair of users. Although computing exact pairwise Spatio-Temporal similarities between query user with all users is inefficient, we show that with our hybrid pruning scheme the most similar users can be obtained in logarithmic time with in a (1+\epsilon) factor approximation of the optimal. We are developing a framework to test our models against a real dataset of urban users.