Goto

Collaborating Authors

 Country


Modelling Individual Negative Emotion Spreading Process with Mobile Phones

AAAI Conferences

Individual mood is important for physical and emotional well-being, creativity and working memory. However, due to the lack of long-term real tracking daily data in individual level, most current works focus their efforts on population level and short-term small group. An ignored yet important task is to find the sentiment spreading mechanism in individual level from their daily behavior data. This paper studies this task by raising the following fundamental and summarization question, being not sufficiently answered by the literature so far:Given a social network, how the sentiment spread? The current individual-level network spreading models always assume one can infect others only when he/she has been infected. Considering the negative emotion spreading characters in individual level, we loose this assumption, and give an individual negative emotion spreading model. In this paper, we propose a Graph-Coupled Hidden Markov Sentiment Model for modeling the propagation of infectious negative sentiment locally within a social network. Taking the MIT Social Evolution dataset as an example, the experimental results verify the efficacy of our techniques on real-world data.


Egalitarian Collective Decision Making under Qualitative Possibilistic Uncertainty: Principles and Characterization

AAAI Conferences

Following Fleming (1952), Harsanyi (1955) showed that if the collective preference satisfies von Neumann and Morgenstern's Prade's axioms (1995), and particularly risk aversion, The present paper raises the question of collective resorts on (i) the identification of a theory of decision decision making under possibilistic uncertainty. The making under uncertainty (DMU) that captures the decision next Section recalls the basic notions on which our work relies makers' behaviour with respect to uncertainty and (ii) the (decision under possibilistic uncertainty, collective utility specification of a collective utility function (CUF) as it may functions, etc.).


Coupled Interdependent Attribute Analysis on Mixed Data

AAAI Conferences

In the real-world applications, heterogeneous interdependent attributes that consist of both discrete and numerical variables can be observed ubiquitously. The usual representation of these data sets is an information table, assuming the independence of attributes. However, very often, they are actually interdependent on one another, either explicitly or implicitly. Limited research has been conducted in analyzing such attribute interactions, which causes the analysis results to be more local than global. This paper proposes the coupled heterogeneous attribute analysis to capture the interdependence among mixed data by addressing coupling context and coupling weights in unsupervised learning. Such global couplings integrate the interactions within discrete attributes, within numerical attributes and across them to form the coupled representation for mixed type objects based on dimension conversion and feature selection. This work makes one step forward towards explicitly modeling the interdependence of heterogeneous attributes among mixed data, verified by the applications in data structure analysis, data clustering evaluation, and density comparison. Substantial experiments on 12 UCI data sets show that our approach can effectively capture the global couplings of heterogeneous attributes and outperforms the state-of-the-art methods, supported by statistical analysis.


Information Gathering and Reward Exploitation of Subgoals for POMDPs

AAAI Conferences

Planning in large partially observable Markov decision processes (POMDPs) is challenging especially when a long planning horizon is required. A few recent algorithms successfully tackle this case but at the expense of a weaker information-gathering capacity. In this paper, we propose Information Gathering and Reward Exploitation of Subgoals (IGRES), a randomized POMDP planning algorithm that leverages information in the state space to automatically generate "macro-actions" to tackle tasks with long planning horizons, while locally exploring the belief space to allow effective information gathering. Experimental results show that IGRES is an effective multi-purpose POMDP solver, providing state-of-the-art performance for both long horizon planning tasks and information-gathering tasks on benchmark domains. Additional experiments with an ecological adaptive management problem indicate that IGRES is a promising tool for POMDP planning in real-world settings.


Spatio-Temporal Signatures of User-Centric Data: How Similar Are We?

AAAI Conferences

Much work has been done on understanding and predicting human mobility in time. In this work, we are interested in obtaining a set of users who are spatio-temporally most similar to a query user. We propose an efficient way of user data representation called Spatio-Temporal Signatures to keep track of complete record of user movement. We define a measure called Spatio-Temporal similarity for comparing a given pair of users. Although computing exact pairwise Spatio-Temporal similarities between query user with all users is inefficient, we show that with our hybrid pruning scheme the most similar users can be obtained in logarithmic time with in a (1+\epsilon) factor approximation of the optimal. We are developing a framework to test our models against a real dataset of urban users.


Identifying At-Risk Students in Massive Open Online Courses

AAAI Conferences

Massive Open Online Courses (MOOCs) have received widespread attention for their potential to scale higher education, with multiple platforms such as Coursera, edX and Udacity recently appearing. Despite their successes, a major problem faced by MOOCs is low completion rates. In this paper, we explore the accurate early identification of students who are at risk of not completing courses. We build predictive models weekly, over multiple offerings of a course. Furthermore, we envision student interventions that present meaningful probabilities of failure, enacted only for marginal students.To be effective, predicted probabilities must be both well-calibrated and smoothed across weeks.Based on logistic regression, we propose two transfer learning algorithms to trade-off smoothness and accuracy by adding a regularization term to minimize the difference of failure probabilities between consecutive weeks. Experimental results on two offerings of a Coursera MOOC establish the effectiveness of our algorithms.


Ordering-Sensitive and Semantic-Aware Topic Modeling

AAAI Conferences

Topic modeling of textual corpora is an important and challenging problem. In most previous work, the “bag-of-words” assumption is usually made which ignores the ordering of words. This assumption simplifies the computation, but it unrealistically loses the ordering information and the semantic of words in the context. In this paper, we present a Gaussian Mixture Neural Topic Model (GMNTM) which incorporates both the ordering of words and the semantic meaning of sentences into topic modeling. Specifically, we represent each topic as a cluster of multi-dimensional vectors and embed the corpus into a collection of vectors generated by the Gaussian mixture model. Each word is affected not only by its topic, but also by the embedding vector of its surrounding words and the context. The Gaussian mixture components and the topic of documents, sentences and words can be learnt jointly. Extensive experiments show that our model can learn better topics and more accurate word distributions for each topic. Quantitatively, comparing to state-of-the-art topic modeling approaches, GMNTM obtains significantly better performance in terms of perplexity, retrieval accuracy and classification accuracy.


Circumventing Robots' Failures by Embracing Their Faults: A Practical Approach to Planning for Autonomous Construction

AAAI Conferences

This paper overviews our application of state-of-the-art automated planning algorithms to real mobile robots performing an autonomous construction task, a domain in which robots are prone to faults. We describe how embracing these faults leads to better representations and smarter planning, allowing robots with limited precision to avoid catastrophic failures and succeed in intricate constructions.


Topical Word Embeddings

AAAI Conferences

Most word embedding models typically represent each word using a single vector, which makes these models indiscriminative for ubiquitous homonymy and polysemy. In order to enhance discriminativeness, we employ latent topic models to assign topics for each word in the text corpus, and learn topical word embeddings (TWE) based on both words and their topics. In this way, contextual word embeddings can be flexibly obtained to measure contextual word similarity. We can also build document representations, which are more expressive than some widely-used document models such as latent topic models. In the experiments, we evaluate the TWE models on two tasks, contextual word similarity and text classification. The experimental results show that our models outperform typical word embedding models including the multi-prototype version on contextual word similarity, and also exceed latent topic models and other representative document models on text classification.


Tensor-Based Learning for Predicting Stock Movements

AAAI Conferences

Stock movements are essentially driven by new information. Market data, financial news, and social sentiment are believed to have impacts on stock markets. To study the correlation between information and stock movements, previous works typically concatenate the features of different information sources into one super feature vector. However, such concatenated vector approaches treat each information source separately and ignore their interactions. In this article, we model the multi-faceted investors’ information and their intrinsic links with tensors. To identify the nonlinear patterns between stock movements and new information, we propose a supervised tensor regression learning approach to investigate the joint impact of different information sources on stock markets. Experiments on CSI 100 stocks in the year 2011 show that our approach outperforms the state-of-the-art trading strategies.