Goto

Collaborating Authors

 Country


Laplace Propagation

Neural Information Processing Systems

We present a novel method for approximate inference in Bayesian models and regularized risk functionals. It is based on the propagation of mean and variance derived from the Laplace approximation of conditional probabilities in factorizing distributions, much akin to Minka's Expectation Propagation. In the jointly normal case, it coincides with the latter and belief propagation, whereas in the general case, it provides an optimization strategy containing Support Vector chunking, the Bayes Committee Machine, and Gaussian Process chunking as special cases.


AUC Optimization vs. Error Rate Minimization

Neural Information Processing Systems

The area under an ROC curve (AUC) is a criterion used in many applications to measure the quality of a classification algorithm. However, the objective function optimized in most of these algorithms is the error rate and not the AUC value. We give a detailed statistical analysis of the relationship between the AUC and the error rate, including the first exact expression of the expected value and the variance of the AUC for a fixed error rate. Our results show that the average AUC is monotonically increasing as a function of the classification accuracy, but that the standard deviation for uneven distributions and higher error rates is noticeable. Thus, algorithms designed to minimize the error rate may not lead to the best possible AUC values. We show that, under certain conditions, the global function optimized by the RankBoost algorithm is exactly the AUC. We report the results of our experiments with RankBoost in several datasets demonstrating the benefits of an algorithm specifically designed to globally optimize the AUC over other existing algorithms optimizing an approximation of the AUC or only locally optimizing the AUC.


Linear Response for Approximate Inference

Neural Information Processing Systems

Belief propagation on cyclic graphs is an efficient algorithm for computing approximate marginal probability distributions over single nodes and neighboring nodes in the graph. In this paper we propose two new algorithms for approximating joint probabilities of arbitrary pairs of nodes and prove a number of desirable properties that these estimates fulfill. The first algorithm is a propagation algorithm which is shown to converge if belief propagation converges to a stable fixed point. The second algorithm is based on matrix inversion. Experiments compare a number of competing methods.


Nonstationary Covariance Functions for Gaussian Process Regression

Neural Information Processing Systems

We introduce a class of nonstationary covariance functions for Gaussian process (GP) regression. Nonstationary covariance functions allow the model to adapt to functions whose smoothness varies with the inputs. The class includes a nonstationary version of the Matรฉrn stationary covariance, in which the differentiability of the regression function is controlled by a parameter, freeing one from fixing the differentiability in advance. In experiments, the nonstationary GP regression model performs well when the input space is two or three dimensions, outperforming a neural network model and Bayesian free-knot spline models, and competitive with a Bayesian neural network, but is outperformed in one dimension by a state-of-the-art Bayesian free-knot spline model.


Learning to Find Pre-Images

Neural Information Processing Systems

We consider the problem of reconstructing patterns from a feature map. Learning algorithms using kernels to operate in a reproducing kernel Hilbert space (RKHS) express their solutions in terms of input points mapped into the RKHS. We introduce a technique based on kernel principal component analysis and regression to reconstruct corresponding patterns in the input space (aka pre-images) and review its performance in several applications requiring the construction of pre-images. The introduced technique avoids difficult and/or unstable numerical optimization, is easy to implement and, unlike previous methods, permits the computation of pre-images in discrete input spaces.


An MCMC-Based Method of Comparing Connectionist Models in Cognitive Science

Neural Information Processing Systems

Despite the popularity of connectionist models in cognitive science, their performance can often be difficult to evaluate. Inspired by the geometric approach to statistical model selection, we introduce a conceptually similar method to examine the global behavior of a connectionist model, by counting the number and types of response patterns it can simulate. The Markov Chain Monte Carlo-based algorithm that we constructed รžnds these patterns efficiently. We demonstrate the approach using two localist network models of speech perception.


Pairwise Clustering and Graphical Models

Neural Information Processing Systems

Significant progress in clustering has been achieved by algorithms that are based on pairwise affinities between the datapoints. In particular, spectral clustering methods have the advantage of being able to divide arbitrarily shaped clusters and are based on efficient eigenvector calculations. However, spectral methods lack a straightforward probabilistic interpretation which makes it difficult to automatically set parameters using training data. In this paper we use the previously proposed typical cut framework for pairwise clustering. We show an equivalence between calculating the typical cut and inference in an undirected graphical model. We show that for clustering problems with hundreds of datapoints exact inference may still be possible. For more complicated datasets, we show that loopy belief propagation (BP) and generalized belief propagation (GBP) can give excellent results on challenging clustering problems. We also use graphical models to derive a learning algorithm for affinity matrices based on labeled data.


A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications

Neural Information Processing Systems

Over the last years significant efforts have been made to develop kernels that can be applied to sequence data such as DNA, text, speech, video and images. The Fisher Kernel and similar variants have been suggested as good ways to combine an underlying generative model in the feature space and discriminant classifiers such as SVM's. In this paper we suggest an alternative procedure to the Fisher kernel for systematically finding kernel functions that naturally handle variable length sequence data in multimedia domains. In particular for domains such as speech and images we explore the use of kernel functions that take full advantage of well known probabilistic models such as Gaussian Mixtures and single full covariance Gaussian models. We derive a kernel distance based on the Kullback-Leibler (KL) divergence between generative models. In effect our approach combines the best of both generative and discriminative methods and replaces the standard SVM kernels. We perform experiments on speaker identification/verification and image classification tasks and show that these new kernels have the best performance in speaker verification and mostly outperform the Fisher kernel based SVM's and the generative classifiers in speaker identification and image classification.


Extreme Components Analysis

Neural Information Processing Systems

Principal components analysis (PCA) is one of the most widely used techniques in machine learning and data mining. Minor components analysis (MCA) is less well known, but can also play an important role in the presence of constraints on the data distribution. In this paper we present a probabilistic model for "extreme components analysis" (XCA) which at the maximum likelihood solution extracts an optimal combination of principal and minor components. For a given number of components, the log-likelihood of the XCA model is guaranteed to be larger or equal than that of the probabilistic models for PCA and MCA. We describe an efficient algorithm to solve for the globally optimal solution. For log-convex spectra we prove that the solution consists of principal components only, while for log-concave spectra the solution consists of minor components. In general, the solution admits a combination of both. In experiments we explore the properties of XCA on some synthetic and real-world datasets.