Country
Near-Optimal Bayesian Active Learning with Noisy Observations
Golovin, Daniel, Krause, Andreas, Ray, Debajyoti
We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise-free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near-optimally. We show that if the observations are noisy, perhaps surprisingly, GBS can perform very poorly. We develop EC2, a novel, greedy active learning algorithm and prove that it is competitive with the optimal policy, thus obtaining the first competitiveness guarantees for Bayesian active learning with noisy observations. Our bounds rely on a recently discovered diminishing returns property called adaptive submodularity, generalizing the classical notion of submodular set functions to adaptive policies. Our results hold even if the tests have nonโuniform cost and their noise is correlated. We also propose EffECXtive, a particularly fast approximation of EC2, and evaluate it on a Bayesian experimental design problem involving human subjects, intended to tease apart competing economic theories of how people make decisions under uncertainty.
Probabilistic Multi-Task Feature Selection
Zhang, Yu, Yeung, Dit-Yan, Xu, Qian
Recently, some variants of the $l_1$ norm, particularly matrix norms such as the $l_{1,2}$ and $l_{1,\infty}$ norms, have been widely used in multi-task learning, compressed sensing and other related areas to enforce sparsity via joint regularization. In this paper, we unify the $l_{1,2}$ and $l_{1,\infty}$ norms by considering a family of $l_{1,q}$ norms for $1 < q\le\infty$ and study the problem of determining the most appropriate sparsity enforcing norm to use in the context of multi-task feature selection. Using the generalized normal distribution, we provide a probabilistic interpretation of the general multi-task feature selection problem using the $l_{1,q}$ norm. Based on this probabilistic interpretation, we develop a probabilistic model using the noninformative Jeffreys prior. We also extend the model to learn and exploit more general types of pairwise relationships between tasks. For both versions of the model, we devise expectation-maximization~(EM) algorithms to learn all model parameters, including $q$, automatically. Experiments have been conducted on two cancer classification applications using microarray gene expression data.
Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning
Jain, Prateek, Vijayanarasimhan, Sudheendra, Grauman, Kristen
We consider the problem of retrieving the database points nearest to a given {\em hyperplane} query without exhaustively scanning the database. We propose two hashing-based solutions. Our first approach maps the data to two-bit binary keys that are locality-sensitive for the angle between the hyperplane normal and a database point. Our second approach embeds the data into a vector space where the Euclidean norm reflects the desired distance between the original points and hyperplane query. Both use hashing to retrieve near points in sub-linear time. Our first method's preprocessing stage is more efficient, while the second has stronger accuracy guarantees. We apply both to pool-based active learning: taking the current hyperplane classifier as a query, our algorithm identifies those points (approximately) satisfying the well-known minimal distance-to-hyperplane selection criterion. We empirically demonstrate our methods' tradeoffs, and show that they make it practical to perform active selection with millions of unlabeled points.
Semi-Supervised Learning with Adversarially Missing Label Information
We address the problem of semi-supervised learning in an adversarial setting. Instead of assuming that labels are missing at random, we analyze a less favorable scenario where the label information can be missing partially and arbitrarily, which is motivated by several practical examples. We present nearly matching upper and lower generalization bounds for learning in this setting under reasonable assumptions about available label information. Motivated by the analysis, we formulate a convex optimization problem for parameter estimation, derive an efficient algorithm, and analyze its convergence. We provide experimental results on several standard data sets showing the robustness of our algorithm to the pattern of missing label information, outperforming several strong baselines.
Robust PCA via Outlier Pursuit
Xu, Huan, Caramanis, Constantine, Sanghavi, Sujay
Singular Value Decomposition (and Principal Component Analysis) is one of the most widely used techniques for dimensionality reduction: successful and efficiently computable, it is nevertheless plagued by a well-known, well-documented sensitivity to outliers. Recent work has considered the setting where each point has a few arbitrarily corrupted components. Yet, in applications of SVD or PCA such as robust collaborative filtering or bioinformatics, malicious agents, defective genes, or simply corrupted or contaminated experiments may effectively yield entire points that are completely corrupted. We present an efficient convex optimization-based algorithm we call Outlier Pursuit, that under some mild assumptions on the uncorrupted points (satisfied, e.g., by the standard generative assumption in PCA problems) recovers the *exact* optimal low-dimensional subspace, and identifies the corrupted points. Such identification of corrupted points that do not conform to the low-dimensional approximation, is of paramount interest in bioinformatics and financial applications, and beyond. Our techniques involve matrix decomposition using nuclear norm minimization, however, our results, setup, and approach, necessarily differ considerably from the existing line of work in matrix completion and matrix decomposition, since we develop an approach to recover the correct *column space* of the uncorrupted matrix, rather than the exact matrix itself.
Gaussian Process Preference Elicitation
Guo, Shengbo, Sanner, Scott, Bonilla, Edwin V.
Bayesian approaches to preference elicitation (PE) are particularly attractive due to their ability to explicitly model uncertainty in users' latent utility functions. However, previous approaches to Bayesian PE have ignored the important problem of generalizing from previous users to an unseen user in order to reduce the elicitation burden on new users. In this paper, we address this deficiency by introducing a Gaussian Process (GP) prior over users' latent utility functions on the joint space of user and item features. We learn the hyper-parameters of this GP on a set of preferences of previous users and use it to aid in the elicitation process for a new user. This approach provides a flexible model of a multi-user utility function, facilitates an efficient value of information (VOI) heuristic query selection strategy, and provides a principled way to incorporate the elicitations of multiple users back into the model. We show the effectiveness of our method in comparison to previous work on a real dataset of user preferences over sushi types.
Active Estimation of F-Measures
Sawade, Christoph, Landwehr, Niels, Scheffer, Tobias
We address the problem of estimating the F-measure of a given model as accurately as possible on a fixed labeling budget. This problem occurs whenever an estimate cannot be obtained from held-out training data; for instance, when data that have been used to train the model are held back for reasons of privacy or do not reflect the test distribution. In this case, new test instances have to be drawn and labeled at a cost. An active estimation procedure selects instances according to an instrumental sampling distribution. An analysis of the sources of estimation error leads to an optimal sampling distribution that minimizes estimator variance. We explore conditions under which active estimates of F-measures are more accurate than estimates based on instances sampled from the test distribution.
Causal discovery in multiple models from different experiments
A long-standing open research problem is how to use information from different experiments, including background knowledge, to infer causal relations. Recent developments have shown ways to use multiple data sets, provided they originate from identical experiments. We present the MCI-algorithm as the first method that can infer provably valid causal relations in the large sample limit from different experiments. It is fast, reliable and produces very clear and easily interpretable output. It is based on a result that shows that constraint-based causal discovery is decomposable into a candidate pair identification and subsequent elimination step that can be applied separately from different models. We test the algorithm on a variety of synthetic input model sets to assess its behavior and the quality of the output. The method shows promising signs that it can be adapted to suit causal discovery in real-world application areas as well, including large databases.
Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories
Konidaris, George, Kuindersma, Scott, Grupen, Roderic, Barto, Andrew G.
We introduce CST, an algorithm for constructing skill trees from demonstration trajectories in continuous reinforcement learning domains. CST uses a changepoint detection method to segment each trajectory into a skill chain by detecting a change of appropriate abstraction, or that a segment is too complex to model as a single skill. The skill chains from each trajectory are then merged to form a skill tree. We demonstrate that CST constructs an appropriate skill tree that can be further refined through learning in a challenging continuous domain, and that it can be used to segment demonstration trajectories on a mobile manipulator into chains of skills where each skill is assigned an appropriate abstraction.
Copula Bayesian Networks
We present the Copula Bayesian Network model for representing multivariate continuous distributions. Our approach builds on a novel copula-based parameterization of a conditional density that, joined with a graph that encodes independencies, offers great flexibility in modeling high-dimensional densities, while maintaining control over the form of the univariate marginals. We demonstrate the advantage of our framework for generalization over standard Bayesian networks as well as tree structured copula models for varied real-life domains that are of substantially higher dimension than those typically considered in the copula literature.