Goto

Collaborating Authors

 Country


On-Chip Compensation of Device-Mismatch Effects in Analog VLSI Neural Networks

Neural Information Processing Systems

Device mismatch in VLSI degrades the accuracy of analog arithmetic circuits and lowers the learning performance of large-scale neural networks implemented in this technology. We show compact, low-power on-chip calibration techniques that compensate for device mismatch. Our techniques enable large-scale analog VLSI neural networks with learning performance on the order of 10 bits. We demonstrate our techniques on a 64-synapse linear perceptron learning with the Least-Mean-Squares (LMS) algorithm, and fabricated in a 0.35ยตm CMOS process.


On Semi-Supervised Classification

Neural Information Processing Systems

A graph-based prior is proposed for parametric semi-supervised classification. The prior utilizes both labelled and unlabelled data; it also integrates features from multiple views of a given sample (e.g., multiple sensors), thus implementing a Bayesian form of co-training. An EM algorithm for training the classifier automatically adjusts the tradeoff between the contributions of: (a) the labelled data; (b) the unlabelled data; and (c) the co-training information. Active label query selection is performed using a mutual information based criterion that explicitly uses the unlabelled data and the co-training information. Encouraging results are presented on public benchmarks and on measured data from single and multiple sensors.


Dynamic Bayesian Networks for Brain-Computer Interfaces

Neural Information Processing Systems

We describe an approach to building brain-computer interfaces (BCI) based on graphical models for probabilistic inference and learning. We show how a dynamic Bayesian network (DBN) can be used to infer probability distributions over brain-and body-states during planning and execution of actions. The DBN is learned directly from observed data and allows measured signals such as EEG and EMG to be interpreted in terms of internal states such as intent to move, preparatory activity, and movement execution. Unlike traditional classification-based approaches to BCI, the proposed approach (1) allows continuous tracking and prediction of internal states over time, and (2) generates control signals based on an entire probability distribution over states rather than binary yes/no decisions. We present preliminary results of brain-and body-state estimation using simultaneous EEG and EMG signals recorded during a self-paced left/right hand movement task.


Nearly Tight Bounds for the Continuum-Armed Bandit Problem

Neural Information Processing Systems

In the multi-armed bandit problem, an online algorithm must choose from a set of strategies in a sequence of n trials so as to minimize the total cost of the chosen strategies. While nearly tight upper and lower bounds are known in the case when the strategy set is finite, much less is known when there is an infinite strategy set.


Dependent Gaussian Processes

Neural Information Processing Systems

Gaussian processes are usually parameterised in terms of their covariance functions. However, this makes it difficult to deal with multiple outputs, because ensuring that the covariance matrix is positive definite is problematic. An alternative formulation is to treat Gaussian processes as white noise sources convolved with smoothing kernels, and to parameterise the kernel instead. Using this, we extend Gaussian processes to handle multiple, coupled outputs.


Conditional Models of Identity Uncertainty with Application to Noun Coreference

Neural Information Processing Systems

Coreference analysis, also known as record linkage or identity uncertainty, is a difficult and important problem in natural language processing, databases, citation matching and many other tasks. This paper introduces several discriminative, conditional-probability models for coreference analysis, all examples of undirected graphical models. Unlike many historical approaches to coreference, the models presented here are relational--they do not assume that pairwise coreference decisions should be made independently from each other. Unlike other relational models of coreference that are generative, the conditional model here can incorporate a great variety of features of the input without having to be concerned about their dependencies--paralleling the advantages of conditional random fields over hidden Markov models.



Kernel Projection Machine: a New Tool for Pattern Recognition

Neural Information Processing Systems

This paper investigates the effect of Kernel Principal Component Analysis (KPCA)within the classification framework, essentially the regularization propertiesof this dimensionality reduction method. KPCA has been previously used as a pre-processing step before applying an SVM but we point out that this method is somewhat redundant from a regularization pointof view and we propose a new algorithm called Kernel Projection Machine to avoid this redundancy, based on an analogy with the statistical framework of regression for a Gaussian white noise model. Preliminary experimental results show that this algorithm reaches the same performances as an SVM.


Experts in a Markov Decision Process

Neural Information Processing Systems

We consider an MDP setting in which the reward function is allowed to change during each time step of play (possibly in an adversarial manner), yet the dynamics remain fixed. Similar to the experts setting, we address the question of how well can an agent do when compared to the reward achieved under the best stationary policy over time. We provide efficient algorithms, which have regret bounds with no dependence on the size of state space. Instead, these bounds depend only on a certain horizon time of the process and logarithmically on the number of actions. We also show that in the case that the dynamics change over time, the problem becomes computationally hard.


Contextual Models for Object Detection Using Boosted Random Fields

Neural Information Processing Systems

We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.