Goto

Collaborating Authors

 Country


Correlation Codes in Neuronal Populations

Neural Information Processing Systems

Population codes often rely on the tuning of the mean responses to the stimulus parameters. However, this information can be greatly suppressed by long range correlations. Here we study the efficiency of coding information in the second order statistics of the population responses. We show that the Fisher Information of this system grows linearly with the size of the system. We propose a bilinear readout model for extracting information from correlation codes, and evaluate its performance in discrimination and estimation tasks. It is shown that the main source of information in this system is the stimulus dependence of the variances of the single neuron responses.


ACh, Uncertainty, and Cortical Inference

Neural Information Processing Systems

Acetylcholine (ACh) has been implicated in a wide variety of tasks involving attentional processes and plasticity. Following extensive animal studies, it has previously been suggested that ACh reports on uncertainty and controls hippocampal, cortical and cortico-amygdalar plasticity. We extend this view and consider its effects on cortical representational inference, arguing that ACh controls the balance between bottom-up inference, influenced by input stimuli, and top-down inference, influenced by contextual information. We illustrate our proposal using a hierarchical hidden Markov model.


Playing is believing: The role of beliefs in multi-agent learning

Neural Information Processing Systems

We propose a new classification for multi-agent learning algorithms, with each league of players characterized by both their possible strategies and possible beliefs. Using this classification, we review the optimality of existing algorithms, including the case of interleague play. We propose an incremental improvement to the existing algorithms that seems to achieve average payoffs that are at least the Nash equilibrium payoffs in the longrun against fair opponents.


EM-DD: An Improved Multiple-Instance Learning Technique

Neural Information Processing Systems

In this model, each training example is a set (or bag) of instances along with a single label equal to the maximum label among all instances in the bag. The individual instances within the bag are not given labels. The goal is to learn to accurately predict the label of previously unseen bags. Standard supervised learning can be viewed as a special case of MI learning where each bag holds a single instance. The MI learning model was originally motivated by the drug activity prediction problem where each instance is a possible conformation (or shape) of a molecule and each bag contains all likely low-energy conformations for the molecule.


Learning Lateral Interactions for Feature Binding and Sensory Segmentation

Neural Information Processing Systems

We present a new approach to the supervised learning of lateral interactions for the competitive layer model (CLM) dynamic feature binding architecture. The method is based on consistency conditions, which were recently shown to characterize the attractor states of this linear threshold recurrent network. For a given set of training examples the learning problem is formulated as a convex quadratic optimization problem in the lateral interaction weights. An efficient dimension reduction of the learning problem can be achieved by using a linear superposition of basis interactions. We show the successful application of the method to a medical image segmentation problem of fluorescence microscope cell images.


A Variational Approach to Learning Curves

Neural Information Processing Systems

We combine the replica approach from statistical physics with a variational approach to analyze learning curves analytically. We apply the method to Gaussian process regression. As a main result we derive approximative relations between empirical error measures, the generalization error and the posterior variance.


A Dynamic HMM for On-line Segmentation of Sequential Data

Neural Information Processing Systems

We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-stationary time series from a dynamical system that switches between multiple operating modes. Unlike other approaches, our method processes the data incrementally and without any training of internal parameters. We use an HMM with a dynamically changing number of states and an online variant of the Viterbi algorithm that performs an unsupervised segmentation and classification of the data on-the-fly, i.e. the method is able to process incoming data in real-time. The main idea of the approach is to track and segment changes of the probability density of the data in a sliding window on the incoming data stream.


Learning Spike-Based Correlations and Conditional Probabilities in Silicon

Neural Information Processing Systems

We have designed and fabricated a VLSI synapse that can learn a conditional probability or correlation between spike-based inputs and feedback signals. The synapse is low power, compact, provides nonvolatile weight storage, and can perform simultaneous multiplication and adaptation. We can calibrate arrays of synapses to ensure uniform adaptation characteristics. Finally, adaptation in our synapse does not necessarily depend on the signals used for computation. Consequently, our synapse can implement learning rules that correlate past and present synaptic activity. We provide analysis and experimental chip results demonstrating the operation in learning and calibration mode, and show how to use our synapse to implement various learning rules in silicon.


Sequential Noise Compensation by Sequential Monte Carlo Method

Neural Information Processing Systems

We present a sequential Monte Carlo method applied to additive noise compensation for robust speech recognition in time-varying noise. The method generates a set of samples according to the prior distribution given by clean speech models and noise prior evolved from previous estimation. An explicit model representing noise effects on speech features is used, so that an extended Kalman filter is constructed for each sample, generating the updated continuous state estimate as the estimation of the noise parameter, and prediction likelihood for weighting each sample. Minimum mean square error (MMSE) inference of the time-varying noise parameter is carried out over these samples by fusion the estimation of samples according to their weights. A residual resampling selection step and a Metropolis-Hastings smoothing step are used to improve calculation efficiency. Experiments were conducted on speech recognition in simulated non-stationary noises, where noise power changed artificially, and highly non-stationary Machinegun noise. In all the experiments carried out, we observed that the method can have significant recognition performance improvement, over that achieved by noise compensation with stationary noise assumption.


The Method of Quantum Clustering

Neural Information Processing Systems

We propose a novel clustering method that is an extension of ideas inherent to scale-space clustering and support-vector clustering. Like the latter, it associates every data point with a vector in Hilbert space, and like the former it puts emphasis on their total sum, that is equal to the scalespace probability function. The novelty of our approach is the study of an operator in Hilbert space, represented by the Schrödinger equation of which the probability function is a solution. This Schrödinger equation contains a potential function that can be derived analytically from the probability function.