Country
Constraint Classification for Multiclass Classification and Ranking
Har-Peled, Sariel, Roth, Dan, Zimak, Dav
We present a meta-algorithm for learning in this framework that learns via a single linear classifier in high dimension. We discuss distribution independent as well as margin-based generalization bounds and present empirical and theoretical evidence showing that constraint classification benefits over existing methods of multiclass classification.
Optoelectronic Implementation of a FitzHugh-Nagumo Neural Model
Romariz, Alexandre R., Wagner, Kelvin
An optoelectronic implementation of a spiking neuron model based on the FitzHugh-Nagumo equations is presented. A tunable semiconductor laser source and a spectral filter provide a nonlinear mapping from driver voltage to detected signal. Linear electronic feedback completes the implementation, which allows either electronic or optical input signals. Experimental results for a single system and numeric results of model interaction confirm that important features of spiking neural models can be implemented through this approach.
Bayesian Monte Carlo
Ghahramani, Zoubin, Rasmussen, Carl E.
We investigate Bayesian alternatives to classical Monte Carlo methods for evaluating integrals. Bayesian Monte Carlo (BMC) allows the incorporation of prior knowledge, such as smoothness of the integrand, into the estimation. In a simple problem we show that this outperforms any classical importance sampling method. We also attempt more challenging multidimensional integrals involved in computing marginal likelihoods of statistical models (a.k.a.
Spikernels: Embedding Spiking Neurons in Inner-Product Spaces
Shpigelman, Lavi, Singer, Yoram, Paz, Rony, Vaadia, Eilon
Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this paper is the construction of biologically-motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can perform various prediction tasks. We discuss in detail the derivation of Spikernels and describe an efficient algorithm for computing their value on any two sequences of neural population spike counts. We demonstrate the merits of our modeling approach using the Spikernel and various standard kernels for the task of predicting hand movement velocities from cortical recordings. In all of our experiments all the kernels we tested outperform the standard scalar product used in regression with the Spikernel consistently achieving the best performance.
Approximate Linear Programming for Average-Cost Dynamic Programming
Roy, Benjamin V., Farias, Daniela D.
This paper extends our earlier analysis on approximate linear programming as an approach to approximating the cost-to-go function in a discounted-cost dynamic program [6]. In this paper, we consider the average-cost criterion and a version of approximate linear programming that generates approximations to the optimal average cost and differential cost function. We demonstrate that a naive version of approximate linear programming prioritizes approximation of the optimal average cost and that this may not be well-aligned with the objective of deriving a policy with low average cost. For that, the algorithm should aim at producing a good approximation of the differential cost function. We propose a twophase variant of approximate linear programming that allows for external control of the relative accuracy of the approximation of the differential cost function over different portions of the state space via state-relevance weights. Performance bounds suggest that the new algorithm is compatible with the objective of optimizing performance and provide guidance on appropriate choices for state-relevance weights.
Dynamic Structure Super-Resolution
The problem of super-resolution involves generating feasible higher resolution images, which are pleasing to the eye and realistic, from a given low resolution image. This might be attempted by using simple filters for smoothing out the high resolution blocks or through applications where substantial prior information is used to imply the textures and shapes which will occur in the images. In this paper we describe an approach which lies between the two extremes. It is a generic unsupervised method which is usable in all domains, but goes beyond simple smoothing methods in what it achieves. We use a dynamic treelike architecture to model the high resolution data. Approximate conditioning on the low resolution image is achieved through a mean field approach.
Learning About Multiple Objects in Images: Factorial Learning without Factorial Search
Williams, Christopher K. I., Titsias, Michalis K.
We consider data which are images containing views of multiple objects. Our task is to learn about each of the objects present in the images. This task can be approached as a factorial learning problem, where each image must be explained by instantiating a model for each of the objects present with the correct instantiation parameters. A major problem with learning a factorial model is that as the number of objects increases, there is a combinatorial explosion of the number of configurations that need to be considered. We develop a method to extract object models sequentially from the data by making use of a robust statistical method, thus avoiding the combinatorial explosion, and present results showing successful extraction of objects from real images.
Adaptation and Unsupervised Learning
Dayan, Peter, Sahani, Maneesh, Deback, Gregoire
Adaptation is a ubiquitous neural and psychological phenomenon, with a wealth of instantiations and implications. Although a basic form of plasticity, it has, bar some notable exceptions, attracted computational theory of only one main variety. In this paper, we study adaptation from the perspective of factor analysis, a paradigmatic technique of unsupervised learning. We use factor analysis to reinterpret a standard view of adaptation, and apply our new model to some recent data on adaptation in the domain of face discrimination.
Neural Decoding of Cursor Motion Using a Kalman Filter
Wu, W, Black, M. J., Gao, Y., Serruya, M., Shaikhouni, A., Donoghue, J. P., Bienenstock, Elie
The direct neural control of external devices such as computer displays or prosthetic limbs requires the accurate decoding of neural activity representing continuous movement. We develop a real-time control system using the spiking activity of approximately 40 neurons recorded with an electrode array implanted in the arm area of primary motor cortex.
Ranking with Large Margin Principle: Two Approaches
We discuss the problem of ranking k instances with the use of a "large margin" principle. We introduce two main approaches: the first is the "fixed margin" policy in which the margin of the closest neighboring classes is being maximized - which turns out to be a direct generalization ofSVM to ranking learning.